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Abstract. Functional magnetic resonance imaging (fMRI) has become 

increasingly used for studying functional integration of the brain. However, the 

large inter-subject variability in functional connectivity renders detection of 

representative group networks very difficult. In this paper, we propose a new 

iterative method that we refer to as “group replicator dynamics,” for detecting 

sparse functional networks that are common across subjects within a group. The 

proposed method uses replicator dynamics, which we show to be equivalent to 

non-negative sparse PCA, and incorporates group information for identifying 

common networks across subjects with subject-specific weightings of the 

identified brain regions reflecting individual differences. Finding a separate 

network for each subject, as opposed to employing traditional averaging 

approaches, permits statistical testing of group significance. We validated our 

method on synthetic data, and applying it to real fMRI data detected task-

specific group networks that conform well with prior neuroscience knowledge. 
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1   Introduction 

In recent years, an increasing interest in the functional integration of the brain has 

emerged for studying higher order cognitive functions [1-3] and neurological diseases 

[3-7]. Functional integration refers to the interactions between different brain regions 

and is typically characterized in terms of functional connectivity [8] and effective 

connectivity [9]. Functional connectivity is defined as the correlations between brain 

regions, whereas effective connectivity is the influence of a brain region over another 

brain region. The focus of this paper will be on inferring functional connectivity from 

functional magnetic resonance imaging (fMRI) data. 

The classical approach of analyzing functional connectivity is to pick a seed voxel 

or region and examine the linear correlations between the seed and all other voxels in 

the brain [10]. This approach has been widely used for detecting resting-state 

networks with promising results [10, 11], but suffers from the drawback of neglecting 

the joint interactions between multiple voxels [12]. To account for such interactions, 

multivariate techniques such as clustering [13-15], principal component analysis 



(PCA) [8], and independent component analysis (ICA) [12, 16] have previously been 

explored. To explicitly exploit the sparse nature of human brain networks [17], we 

have adopted replicator dynamics [18-21] in this paper, which we show to be a fast 

solution to the non-negative sparse PCA problem [22, 23] under certain constraints. 

Enforcing sparsity eases the diffused weighting problem seen in classical PCA [24, 

25], where non-zero loadings (i.e. spatial component maps) are often assigned to the 

majority of voxels within brain, which complicates network identification.  

The multivariate methods described above provide effective means of analyzing 

functional connectivity within a single subject, but the optimal way for performing 

group analysis is not trivial. The traditional way is to either concatenate [26, 27] or 

average [27, 28] the voxel time courses across subjects in detecting representative 

group networks. Alternatively, one can perform connectivity analysis separately on 

each subject and average the results. For instance, Lohmann and Bohn performed 

group inference by first estimating the pairwise correlations between voxels for each 

subject and subsequently applying replicator dynamics on the average correlation 

matrix [18]. Similarly, van de Heuvel et al. in their study of resting-state networks 

applied normalized cut to cluster voxels within each subject and used the consistency 

of the clustermaps to infer group clusters [15]. Provided the functional organization is 

similar across subjects, the average networks would be reasonable representations of 

the group. However, if the connection strengths between brain regions vary across 

subjects, the average group networks may not reflect the features in the individual 

networks of each subject [29]. Moreover, collapsing the individual networks into a 

single group network does not permit statistical testing for group significance. 

Another challenge associated with group analysis is the need for establishing a 

correspondence across subjects. Connectivity analysis performed at the voxel level, as 

often done for most of the aforementioned methods, typically entails spatial 

normalization, which is prone to mis-registration [30-32] and spatial distortions [33]. 

An alternative approach to create a subject correspondence without spatial 

normalization is to define regions of interest (ROIs) in each subject’s native space and 

examine the connectivity between these brain regions. For instance, Marrelec et al. 

used partial correlation to measure the connectivity between anatomically defined 

ROIs [34]. Similarly, Ng et al. applied replicator dynamics on anatomically defined 

ROIs to investigate the effects of task frequency on functional connectivity [21]. To 

avoid the drawbacks associated with spatial normalization, this ROI-based approach 

is thus employed in our analysis.  

In this paper, we propose a new iterative method for detecting sparse functional 

networks consistently recruited among a group of subjects. To encourage sparsity, 

replicator dynamics is used to iteratively update a weight vector that represents the 

degree to which an ROI belongs to the most coherent network. To facilitate statistical 

testing of group significance, we propose to learn the dominant network of each 

subject individually (as opposed to applying replicator dynamics to the average 

correlation matrix of the group [18, 21]) but with group information incorporated 

within each iteration, so that subject variability can be modeled while ensuring group 

networks are being detected. This iterative scheme, as we will demonstrate with 

synthetic and real fMRI data, results in functional networks consisting of the same 

ROIs across subjects yet with different ROI weightings for each subject reflecting the 

individual differences, thus enabling group significance to be assessed.  



2   Materials 

After obtaining informed consent, fMRI data were collected from 10 healthy 

subjects (3 men, 7 women, mean age 57.4 ± 14 years) and 10 Parkinson’s disease 

(PD) patients on and off medication (4 men, 6 women, mean age 66 ± 8 years). Each 

subject was required to first use their right-hand and then their left hand to squeeze a 

bulb with sufficient pressure such that a horizontal bar shown on a screen was kept 

within an undulating pathway. The pathway remained straight during baseline 

periods, which required a constant pressure to be applied. During the time of stimulus, 

the pathway became sinusoidal at a frequency of 0.25 Hz (slow), 0.5 Hz (medium) or 

0.75 Hz (fast) presented in a pseudo-random order. Each run lasted 260s, alternating 

between baseline and stimulus of 20 s duration with an extra 20 s baseline period at 

the beginning and end of each run. 

Functional MRI was performed on a Philips Gyroscan Intera 3.0 T scanner 

(Philips, Best, Netherlands) equipped with a head-coil. T2*-weighted images with 

blood oxygen level dependent (BOLD) contrast were acquired using an echo-planar 

(EPI) sequence with an echo time of 3.7 ms, a repetition time of 1985 ms, a flip angle 

of 90°, an in plane resolution of 128×128 pixels, and a pixel size of 1.9×1.9 mm. Each 

volume consisted of 36 axial slices of 3 mm thickness with a 1 mm gap. A 3D T1-

weighted image consisting of 170 axial slices was further acquired to facilitate 

anatomical localization of activation. 

Each subject’s fMRI data was pre-processed using Brain Voyager’s (Brain 

Innovation B.V.) trilinear interpolation for 3D motion correction and sinc 

interpolation for slice time correction. Further motion correction was performed using 

motion corrected independent component analysis (MCICA) [35]. The voxel time 

courses were then high-pass filtered to account for temporal drifts. No spatial warping 

or smoothing was performed.  

Eighteen motor-related ROIs were manually drawn by an expert on each subject’s  

structural scan in their native space based upon anatomical landmarks and guided by a 

neurological atlas [36] using AMIRA (Mercury Computer Systems, San Diego, 

USA). ROIs included the bilateral putamen, caudate, globus pallidus, thalamus 

(THA), cerebellum (CER), primary motor cortex (M1), supplementary motor area 

(SMA), prefrontal cortex (PFC), and anterior cingulated cortex (ACC). The 

segmented ROIs were resliced at the fMRI resolution and used to extract the 

preprocessed voxel time courses within each ROI for subsequent analysis. 

3   Methods 

We present here a novel iterative method, which we refer to as group replicator 

dynamics (GRD), for detecting sparse functional networks that are consistent across 

subjects. Given an initial weight vector for each subject, where the magnitude of the 

elements represent the degree to which the corresponding ROIs belong to the most 

coherent network, replicator dynamics is iteratively applied to update these weight 

vectors, as described in Section 3.1. In each iteration, after all subjects’ weight vectors 



are updated, these updated weight vectors are adjusted based on the group information 

as described in Section 3.2. These two steps are repeated until convergence. 

3.1   Replicator Dynamics 

Replicator dynamics is a well-known concept in theoretical biology for modeling the 

evolution of interacting species [37]. In this model, each species is assigned a fitness 

value, which is used to determine the fittest species that survives over time. In the 

context of functional connectivity analysis, each brain region is considered a species, 

with its fitness measured by the correlation between brain regions. If we let w
i
(0) be 

the initial weight vector of the ith subject as defined above, the most coherent network 

can be determined by iteratively applying the following replicator equation [37]: 
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where .* represents element-wise multiplication, k is the iteration counter, and Ci is 

the correlation matrix of the i
th 

subject with each element corresponding to the pair-

wise correlation between average ROI intensity time courses. To avoid self 

connections, the main diagonal of Ci is set to zero. Furthermore, to avoid bias during 

initialization, w
i
(0) is set to 1/Nr, where Nr is the number of brain regions being 

examined. Using (1), w
i
 is guaranteed to converge to a local maximum based on the 

fundamental theorem of natural selection [37], provided C
i
 is real-value, non-

negative, and symmetric. In this paper, positive and negative correlations are assumed 

to be of equal importance, thus the absolute value of the correlations is used to ensure 

C
i
 is non-negative. Nevertheless, networks with positively correlated regions can be 

separately analyzed by nulling out the negative elements in C
i
 and vice versa. Upon 

convergence, only elements corresponding to the most correlated brain regions will be 

non-zero due to the sparse nature of replicator dynamics as we discuss next.  

The objective function that (1) maximizes is in fact the same as PCA, i.e. w
iT

C
i
w

i
. 

Thus, one might argue that using PCA will provide similar results as replicator 

dynamics. However, the results obtained from replicator dynamics can in fact be very 

different from PCA for the following reason. The first principle component of PCA, 

w
i
, is the solution to the optimization problem: 

1,maxarg
2
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which does not encourage sparsity [24, 25], hence all elements of w
i
 will likely be 

non-zero. This problem of diffused weighting complicates network identification, 

since no clear threshold will necessarily be present for separating out the dominant 

network from other less correlated brain regions. To impose sparsity, the constraint in 

(2) needs to be modified to ||w
i
||1 ≤ K, where K is a user-defined parameter [38]. The 

resulting optimization problem is often referred to as sparse PCA: 

KwtosubjectwCw iiiTi

w
i

≤
1

,maxarg  . (3) 



Various solutions for (3) have been proposed. For instance, d’ Aspremont et al. solved 

(3) using semidefinite programming [25] and Zou et al. solved (3) as a regression 

problem with lasso (elastic net) constraints [24]. If we further constrain wi to be non-

negative, the resulting problem will be of the form: 

0,,maxarg ≥≤∑
i

j
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 , 
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which is known as non-negative sparse PCA [22, 23]. Examining (1), since all 

elements of C
i
 are restricted to be non-negative, w

i
 will also be non-negative by 

construction. Moreover, (1) enforces the elements of w
i to sum to one. Thus, 

replicator dynamics is in fact a solution of the non-negative sparse PCA problem! We 

note that previous studies [18] have observed an unexplained tendency of the detected 

networks to comprise of mutually correlated voxels. This observation can actually be 

explained by our finding of the equivalence between replicator dynamics and non-

negative sparse PCA, since imposing sparsity given limited weights (i.e. ∑wj
i
 = 1) 

will encourage the weights to be assigned to mutually correlated brain regions. 

3.2   Group Replicator Dynamics 

If we simply apply (1) separately for each subject until convergence, the detected 

networks will likely be different across subjects [29]. However, if there exists a core 

functional network that is common across subjects, we can exploit group information 

to identify this core network. The underlying assumption is that the majority of 

subjects use the same core functional network to perform the same task, but in 

addition, each subject may recruit extra brain regions, which constitutes inter-subject 

variability. Also, the common core network may not necessarily be the most coherent 

network for every subject, potentially due to different processing strategies or simply 

due to different levels of noise [29]. Given w
i
(k), to encourage networks consisting of 

the same brain regions across subjects, one could adjust w
i
(k) such that the group 

entropy is minimized [39, 40]. For analytic simplicity, if we assume w
i
(k) are 

instances of a normal random variable, w, then the entropy of w is given by: 

Σ∝Σ ln))2(ln rN
eπ  , (5) 

where Σ is the covariance of w. To minimize the entropy, a gradient descent approach 

is used with w
i
(k) updated as follows [39, 40]: 
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where W(k) is a Nr × Ns matrix with w
i
(k) of each subject along the columns and Wc(k) 

is the same as W(k) but with the subject mean removed from each row. λ governs the 

learning rate and must be set below α to ensure numerical stability [39]. Since the 

number of subjects, Ns, will typically be much less than the number of brain regions, 

Nr, WcWc
T
 will be rank deficient. Hence, αI (with α = 0.1) is added to regularize the 

inversion of WcWc
T
. At each iteration k, after updating all subjects’ w

i
(k) using (1), (6) 

is applied to adjust w
i
(k) so that elements of w

i
(k) that are consistently large across 



subjects are reinforced, while other elements are suppressed. (1) is then applied to the 

adjusted w
i
(k) at the next iteration, k+1, and the same process is repeated until 

convergence. Since (1) searches for the most coherent network within a subject, while 

(6) encourages networks to be similar across subjects, the combined effect of (1) and 

(6) results in highly coherent networks that comprise of the same brain regions across 

subjects, but with subject-specific ROI weightings reflecting individual differences.  

To test if the detected functional network is significantly different from that 

obtained from random noise, we first approximate the network coherence of each 

subject, c
i
, as w

iT
C

i
w

i
. A t-test is then applied to the Fisher’s Z-transform of the c

i
’s, 

which we denote as z
i
, to estimate the probability that the z

i
’s are drawn from a null 

distribution generated from random noise. To estimate the mean of the null 

distribution, we temporally permute all the average ROI intensity time courses 10,000 

times, calculate the mean z averaged across subjects for each permutation, and take 

the largest mean z as the null mean. We note that approximating c
i
 as w

iT
C

i
w

i
 is 

legitimate only if the same ROIs are detected as the core functional network across 

subjects. Otherwise, the estimated c
i
’s would represent different networks and 

declaring the presence of a significant common group network under this scenario 

would be invalid. Also, although applying replicator dynamics to the average 

correlation matrix [18, 21] may detect a similar group network, collapsing all 

subjects’ networks into a single group network does not permit testing of group 

significance. We note that subsequent networks can be detected by removing those 

ROIs detected in the dominant network and reapplying the procedures above [18, 21]. 

3.3   Empirical Evaluation 

To test our proposed connectivity analysis framework, we generated 1,000 synthetic 

datasets, each consisting of 10 subjects and 20 ROIs for each subject, as summarized 

in Fig. 1(m). ROIs 1 to 4 were designed to be mutually correlated and form the core 

functional network. These ROIs were also set to be connected to ROI 10 for the 

subject 1, ROI 11 for subject 2, etc. to introduce inter-subject variability. 

Furthermore, we have set ROIs 5 to 9 to be mutually correlated but with lower 

correlation except for subjects 1 and 2 to test the case where a secondary network is 

present and the core functional network is not the most coherent network for some of 

the subjects. The synthetic ROI time courses were generated by convolving a box-car 

with the hemodynamic response and adding Gaussian noise (Fig. 1(k)) at a level 

similar to the real data (Fig. 1(l)). The timing of the box-car for ROIs 1 to 4 and the 

extra subject-dependent ROI is set to be exactly the same in our experiments. For 

ROIs 5 to 9, the stimulus period is shrunk by half to distinguish this secondary 

network from the core. Also, except for subjects 1 and 2, the noise level is set to be 

slightly higher than the core to ensure this secondary network is less correlated. For 

the remaining ROIs, random Gaussian noise is used as the ROI time courses. 

The results obtained by applying the proposed group replicator dynamics as well as 

other related schemes are summarized in Fig. 1(a) to (j), where the average w
i
 of each 

subject over 1,000 synthetic datasets are plotted. Applying replicator dynamics 

separately to each subject (curve with dots) detected ROIs 1 to 4 to be part of the most  
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(j) subject 10 
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(l) real time course 

 

Sub/ROI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 S S S S D D D D D S x x x x x x x x x x 

2 S S S S D D D D D x S x x x x x x x x x 

3 D D D D S S S S S x x D x x x x x x x x 

4 D D D D S S S S S x x x D x x x x x x x 

5 D D D D S S S S S x x x x D x x x x x x 

6 D D D D S S S S S x x x x x D x x x x x 

7 D D D D S S S S S x x x x x x D x x x x 

8 D D D D S S S S S x x x x x x x D x x x 

9 D D D D S S S S S x x x x x x x x D x x 

10 D D D D S S S S S x x x x x x x x x D x 

(m) 

Fig. 1. Synthetic data results. (a) to (j) Average weight vectors of subjects 1 to 10 over 1,000 

datasets detected using group replicator dynamics (circle), replicator dynamics (dot), group 

PCA (triangle), and PCA (cross). (k) Sample synthetic ROI time course with similar noise level 

as in real data (l). (m) Ground truth. “D” and “S” indicate if an ROI belongs to the dominant or 

secondary network. “x” implies random noise. Applying group replicator dynamics detected 

group networks that perfectly matched with the ground truth, but not so for the other methods. 



coherent network for subjects 3 to 10, but not for subjects 1 and 2. This result is 

expected since ROIs 1 to 4 were designed to have lower mutual correlations than 

ROIs 5 to 9 for these two subjects. The extra subject-dependent ROI was also 

assigned roughly equal weights as ROIs 1 to 4. Hence, replicator dynamics alone 

provides a powerful means of detecting sparse subject-specific networks, but it is not 

as effective in identifying group networks, where certain heuristics will be required to 

prune out ROIs 1 to 4 as being the core functional network. We note that 

computationally estimating the weight vector using (1) took less than a millisecond 

for each subject. 

Applying group replicator dynamics (curve with circle) detected ROIs 1 to 4 as the 

core functional network for all subjects even for subjects 1 and 2. Also, no weight was 

falsely assigned to the extra subject-dependent ROI for all 1,000 datasets. 

Furthermore, the p-values obtained for all datasets were well below 0.05. We note 

that applying replicator dynamics on the average correlation matrix also detected 

ROIs 1 to 4 as being the core network, but statistical significance could not be 

assessed since all subjects’ information was collapsed in this approach. 

For comparison, we also applied PCA to each subject separately (curve with 

crosses). Weights were assigned to all ROIs even for random noise, although slightly 

higher weights were on average given to ROIs 1 to 4 and the subject-dependent ROI 

for subjects 3 to 10, and ROIs 5 to 9 for subjects 1 and 2. However, if we instead 

examine the weights of each dataset separately, the weights given to ROIs 1 to 9 and 

the subject-dependent ROI were in fact very similar with weights assigned to ROIs 5 

to 9 occasionally being higher than that of ROIs 1 to 4 for subjects 3 to 10, and vice 

versa for subjects 1 and 2. Thus, defining a subjective threshold to identify the most 

coherent network would be very difficult and ROIs not belonging to the most 

coherent network might be falsely detected.  

To incorporate group information into PCA, we replaced (1) with w
i
(k+1) = 

C
i
w

i
(k), ||w

i
(k)||2 = 1 (i.e. estimating the first principal component using the Power 

method) in our proposed iterative scheme. We refer to this algorithm as group PCA. 

Using this algorithm resulted in similar networks as obtained by applying PCA to 

each subject separately. We suspect the reason for this result was that PCA assigned 

similar weights to every ROI, thus the group entropy of the w
i
’s would be minute, 

leading to negligibly small adjustments applied to w
i
 by (6). 

4   Results and Discussion 

Fig. 2 summarizes the core functional networks detected by applying group replicator 

dynamics to our real experimental fMRI data for each combination of subject group 

and task (e.g. healthy and slow). The correlation matrices for each task were 

estimated using the corresponding segments of the average ROI intensity time 

courses. Only the left-handed results are presented due to space limitation.  

For healthy subjects, the bilateral cerebellar hemispheres, bilateral SMA, and right 

M1 were detected as the core network during slow frequency task. At the medium 

frequency, the bilateral thalami were further detected. Since the thalamus is 

known to serve as a relay between the cerebellum and the cortex, detecting the 
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(a) healthy, slow frequency 
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(b) healthy, medium frequency 
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(c) healthy, fast frequency 
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(d) PD off, slow frequency 
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(e) PD off, medium frequency 
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(f) PD off, fast frequency 
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(g) PD on, slow frequency 
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(h) PD on, medium frequency 
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(i) PD on, fast frequency 

Fig. 2. Real fMRI data results. At the top of each sub-figure is a bar graph of the estimated 

weight vector of each subject using group replicator dynamics. The ROIs given non-zeros 

weights are labeled on the side of the bar graph. The bottom left of each sub-figure is a 

consistency plot. The bottom right of each sub-figure is a 3D rending of the detected ROIs and 

the average weights of these ROIs over the subjects. All networks showed high consistency and 

were detected to be significant at a p-value of 0.05 with Bonferroni correction (i.e. 0.05/18 = 

0.0028). Networks detected in PD off medication were similar to those detected in healthy 

subjects during the fast frequency, demonstrating the effects of brain deficits in PD patients. 

Upon medication, the network appeared to have normalized back to that of the healthy subjects 

during slow frequency, but not at medium and fast. 



thalamus may be a result of increased communication. At the fastest frequency, the 

left M1 instead of the bilateral thalami were found to be part of the core network. 

Prior studies suggested that the ipsilateral M1 becomes more involved as task 

difficulty increases [41], thus detecting the left M1 during a left-handed task at the 

highest frequency conforms to prior neuroscience findings. For PD patients off 

medication, the core network detected at the slow frequency was exactly the same as 

that of the healthy subjects’ during the fast frequency. This result suggests that the 

brain deficits in PD patients made the slow frequency task appeared as difficult as the 

fast condition, hence the need for the left M1. The same network was detected during 

medium and fast frequencies. For PD patients on medication, the core network 

appeared to have normalized to that of healthy subjects at the slow frequency, but 

with more involvement of the right M1, which also matches findings from other prior 

studies [42]. At the medium frequency, the left M1 again became involved, and at the 

fast frequency, substantially more involvement of the bilateral M1 and bilateral SMA 

were found. Increased activity in the SMA upon medication was also observed in 

prior studies [42]. We note that all detected core networks were significant at a p-

value of 0.05 with Bonferroni correction for the number of comparisons (i.e. 0.05/18 

= 0.0028). Also, to test for consistency, we divided the time courses into odd and 

even time points and re-applied our proposed method. The weights obtained by using 

all time points and only the odd and even time points were very similar with 

correlations well above 0.9 for most cases. Regarding the constraint of non-negative 

correlation matrix required for applying replicator dynamics, the correlations of the 

detected ROIs were all positive. Hence, this constraint was not a major issue for the 

current experiment. For comparisons, we also applied group PCA to the data, but the 

results were analogous to the synthetic case, where similar weights were assigned to 

all ROIs. Thus, no distinct group networks could easily be identified. 

5   Conclusions 

In this paper, we proposed a new iterative method for detecting common networks 

within a group of subjects. By exploiting replicator dynamics, which we showed to be 

equivalent to non-negative sparse PCA, and incorporating group information, our 

method was able to detect sparse group networks that perfectly matched with the 

ground truth when applied to synthetic data. In contrast, classical PCA resulted in 

diffused weightings, which greatly hindered network identification. Applying group 

replicator dynamics to real fMRI data detected significant task-specific group 

networks that matched well with prior neuroscience knowledge. Our results thus 

demonstrated that the combination of sparsity and group information provides an 

effective means to combat against inter-subject variability in detecting group 

functional networks.  
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