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Abstract. We propose a novel method for functional segmentation of fMRI 
data that incorporates multiple functional attributes such as activation effects 
and functional connectivity, under a single framework. Similar to PCA, our 
method exploits the structure of the correlation matrix but with neighborhood 
information adaptively integrated to encourage detection of spatially contiguous 
clusters yet without falsely pooling non-active voxels near the functional 
boundaries. In addition, our method adaptively combines PCA and replicator 
dynamics, which we show to be equivalent to non-negative sparse PCA, based 
on the sparsity of the activation pattern. We validate our method quantitatively 
on synthetic data and demonstrate that it outperforms methods including repli-
cator dynamics, PCA, Gaussian mixture models, and general linear models. 
Furthermore, when applied to real fMRI data, our method successfully seg-
mented the Brodmann area 6 into its known functional sub-regions, whereas 
other conventional methods that we examined failed to attain such delineation.  

1   Introduction 

Segmentation of functional magnetic resonance imaging (fMRI) data has by far been 
dominated by univariate analysis approaches. These methods examine each voxel in 
isolation, thus voxel interactions are ignored. To account for spatial correlations, 
Descombes et al. proposed modeling fMRI data using Markov random fields (MRF) 
[1], whereas Woolrich et al. proposed using a spatio-temporal autoregressive model 
[2]. Due to computational complexity, only local spatial correlations are typically 
modeled. Another approach for functionally segmenting the brain relies on identifying 
voxels with temporal responses similar to a pre-selected seed region [3], which  
directly models the correlations between spatially disconnected voxels. However, pre-
specifying a seed region can be difficult. To automatically identify seed regions, Gol-
land et al. proposed using Gaussian mixture models (GMM) under a hierarchical 
framework [4], which alleviates the need to pre-define the number of clusters. Instead, 
expert knowledge is exploited to determine the necessary level of decomposition. The 
limitations to these seed-based approaches are that the detected clusters may not be 
spatially contiguous and the detected voxels may not necessarily pertain to task-
related responses. To detect spatially contiguous clusters, Woolrich et al. proposed 
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applying spatial mixture models on the activation statistics [5]. Similarly, Thirion  
et al. proposed using spectral clustering with activation statistics and physical dis-
tances between voxels as similarity metrics [6]. Using activation statistics encourages 
detection of task-related clusters, but unexpected responses will be neglected. Thus, 
jointly optimizing both functional connectivity and activation effects is desired. 

To identify functional clusters without seeding, Friston et al. proposed using prin-
cipal component analysis (PCA), which exploits the structure of the covariance matrix 
[7]. Thus, correlations between spatially disconnected voxels are also modeled. How-
ever, PCA often results in diffused weightings (i.e. spatial component maps with  
non-zero weights assigned to the majority of the voxels), which complicates cluster 
identification [8]. Another covariance-based method employing replicator dynamics 
was proposed by Lohmann et al. [9]. The authors noted that replicator dynamics has 
the interesting property of detecting clusters with mutually correlated voxels. This 
property, as we have shown previously [10], is in fact a result of the equivalence be-
tween replicator dynamics and non-negative sparse PCA. Thus, replicator dynamics 
can be used to handle the problem of diffused weightings in classical PCA. However, 
connections within a brain region tend to be dense [11], hence direct application of 
replicator dynamics may not be suitable for functional segmentation. A balance  
between diffused and sparse weightings is thus needed. 

In this paper, we propose a new iterative method for functional segmentation of 
fMRI data that integrates the above desired characteristics, namely incorporation of 
activation effects, functional connectivity, neighborhood information, spatial continu-
ity, and a balance between sparse and diffused weightings, under a single framework. 
Similar to PCA, the proposed method exploits the structure of the full correlation 
matrix, where correlations between spatially disconnected voxels are modeled. How-
ever, as opposed to computing voxel correlations in a pair-wise manner, our method 
incorporates neighborhood information into the correlation estimates. Employing a 
similar approach, Neumann et al. showed that incorporating neighborhood informa-
tion encourages detection of spatially contiguous clusters, but may pool voxels near 
the functional boundaries into the clusters [12]. Therefore, we instead devise our 
method to adaptively incorporate neighborhood information based on activation dis-
similarity, which we demonstrate in Section 3.4 to be an effective means of mitigating 
non-active voxels from being falsely pooled. To account for activation effects, we 
replace the diagonal of the correlation matrix (which is simply a set of ones) with the 
correlation between each voxel and the expected response. Voxels within the detected 
clusters will thus be highly correlated as well as activated. To draw a balance between 
diffused and sparse weightings, we propose combining the weight estimates from 
PCA and replicator dynamics in an iterative manner with the relative contributions 
adaptively adjusting to the sparsity of the activation pattern. We thus refer to this 
method as adaptive non-negative sparse PCA (ANSPCA).  

2   Materials 

After obtaining informed consent, fMRI data were collected from 10 Parkinson’s 
disease (PD) patients on and off medication (4 men, 6 women, mean age 66 ± 8 
years). Each subject used their right-hand to squeeze a bulb with sufficient pressure 
such that a horizontal bar shown on a screen was kept within an undulating pathway. 
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The pathway remained straight during baseline periods, and became sinusoidal at a 
frequency of 0.25 Hz, 0.5 Hz or 0.75 Hz during time of stimulus. Each run lasted 
260s, alternating between baseline and stimulus of 20 s duration. 

fMRI was performed on a Philips Gyroscan Intera 3.0 T scanner (Philips, Best, 
Netherlands) equipped with a head-coil. T2*-weighted images with blood oxygen 
level dependent (BOLD) contrast were acquired using an echo-planar (EPI) sequence 
with an echo time of 3.7 ms, a repetition time of 1985 ms, a flip angle of 90°, an in 
plane resolution of 128×128 pixels, and a pixel size of 1.9×1.9 mm. Each volume 
consisted of 36 axial slices of 3 mm thickness with a 1 mm gap. A 3D T1-weighted 
image consisting of 170 axial slices was further acquired to facilitate anatomical lo-
calization of activation. Each subject’s fMRI data was pre-processed using Brain 
Voyager’s (Brain Innovation B.V.) trilinear interpolation for 3D motion correction 
and sinc interpolation for slice timing correction. Further motion correction was per-
formed using motion corrected independent component analysis (MCICA) [13]. The 
voxel time courses were high-pass filtered to account for temporal drifts and tempo-
rally whitened using an autoregressive AR1 model. No spatial warping or smoothing 
was performed. For testing our proposed method, we have selected Brodmann Area 6 
(BA6), which is known to consist of multiple functional subdivisions, as the region of 
interest (ROI). Anatomical delineation of this ROI was performed by an expert based 
on anatomical landmarks and guided by a neurological atlas. The segmented ROIs 
were resliced at the fMRI resolution and used to extract the preprocessed voxel time 
courses within each ROI for subsequent analysis. 

3   Methods 

This section presents our new iterative method for functional segmentation of an ROI. 
A modified correlation matrix incorporating activation effects and neighborhood 
information is first estimated. ANSPCA is then applied to detect the most correlated 
and activated cluster. Subsequent clusters are detected by removing the previously 
identified voxels from the modified correlation matrix, and repeating the procedure. 

3.1   Modified Correlation Matrix 

Let Ni and Nj be the neighborhood of voxels i and j (including voxels i and j). We 
compute a modified correlation estimate between voxels i and j, C(i,j), as follows:  
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where the matrix Ip(t) consists of voxel time courses belonging to Nm (m ∈ {i, j}) 
along the rows. dmp is the Euclidean distance between voxels m and p. Δmp is the dif-
ference in activation statistics (t-values) between voxels m and p. The t-values are 
estimated by applying a general linear model (GLM) to each voxel with a column of 
ones and a box-car convolved with the hemodynamic response, ref(t), as regressors. 
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We note that naively incorporating neighborhood information may pool voxels near 
functional boundaries into the clusters. Therefore, we have specifically designed wkp 
to adaptively reduce the influence from neighboring voxels with dissimilar activation 
level, which we demonstrate in Section 3.4 to be an effective way of moderating non-
active voxels from being mistakenly declared as part of a functional cluster. 

3.2   Replicator Dynamics 

Replicator dynamics is a well known concept that originated from theoretical biology 
for modeling the evolution of different species. In our context, each voxel corre-
sponds to a species with its fitness measured by its correlations to other voxels. Let 
wRD be a weight vector with the ith element representing the degree of which the ith 
voxel belongs to the most correlated cluster. wRD can be estimated by [14]: 
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where .* represents element-wise product and k is the iteration number. Based on  
the fundamental theorem of natural selection [14], wRD is guaranteed to converge 
provided C is real-value, non-negative, and symmetric. Since voxels belonging to  
the same cluster will presumably display positive correlations, we null out the nega-
tive elements to ensure C is non-negative [9]. Restricting C to be non-negative en-
forces wRD to be non-negative. Also, (4) constrains the elements of wRD to sum to one. 
Moreover, (4) maximizes the same objective function as PCA, i.e. wRD

TCwRD. Thus, 
replicator dynamics is in fact a solution to the non-negative sparse PCA problem [8]: 
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Prior studies have noted that replicator dynamics has the desirable property of detect-
ing clusters with mutually correlated voxels [9], [12]. This property can actually be 
explained by the fact that imposing sparsity given limited weights (i.e. ∑wRD

i = 1) 
encourages weights to be assigned to mutually correlated voxels [10]. 

3.3   Adaptive Non-negative Sparse PCA 

Let C be the modified correlation matrix as described in Section 3.1 and let w be a 
weight vector with the ith element corresponding to the degree of which the ith voxel 
belongs to the most correlated and activated cluster. To adaptively adjust the sparsity 
of w, we propose to iteratively estimate w as follows: 
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where wPCA(k) is the PCA estimate of w(k) (i.e. using the Power method), but with 
||wPCA(k)||1=1 to ensure that ||w(k)||1=1 as required for computing wRD(k). γ is the per-
centage of activated voxels estimated as the number of voxels with t-values above a 
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user-specified threshold over the total number of voxels in the ROI. The typical  
t-threshold of 1.96 is used. We note that the t-threshold only serves to estimate γ, and 
not to remove voxels with t-values below the threshold. In fact, voxels with t-values 
falling below the t-threshold but functionally connected to their neighbors can still be 
declared as part of a functional cluster. Using the percentage of activated voxels as γ 
is particularly suitable for drawing a balance between sparse weighting, wRD(k), and 
diffused weighting, wPCA(k), since a sparse activation pattern will result in a low per-
centage of activated voxels, which place greater influence from wRD(k) in estimating 
w and vice versa. To avoid bias, we initialize w(0) to 1/Nr, where Nr is the number of 
voxels within the ROI. Upon convergence, elements of w corresponding to the most 
correlated and activated cluster will rise above 1/Nr, but the detected voxels may not 
form a spatially connected patch. Therefore, we perform connected component analy-
sis to first group the detected voxels into spatially connected clusters. We then find 
the cluster with the highest wTCw, remove the other clusters from C, and reapply the 
above procedure until no spatially disconnected clusters are detected. The resulting 
cluster upon convergence will thus consist of voxels that are highly activated, func-
tionally connected, and spatially connected. To identify subsequent clusters, we re-
move only voxels in the previously detected functional clusters from C and repeat the 
procedure above. 

3.4   Empirical Evaluations 

To test our proposed method on data with ground truth, we generated 1,000 synthetic 
datasets with simulated activation patterns consisting of two clusters that were one 
voxel apart (Fig.1). Also, the signal intensity of the activated voxels was set to de-
crease as a function of their distances from cluster centroids. The time courses of the 
activated voxels in the larger cluster were generated by convolving a box-car function 
having the same stimulus timing as in our experiment with the hemodynamic re-
sponse and adding Gaussian noise. The smaller cluster was generated in a similar 
manner but with the box-car delayed by 2 seconds.  

For comparisons with the state-of-the-art, we also tested the following methods: 
replicator dynamics [9] with Pearson’s correlation, PCA [7], GMM [4] assuming two 
clusters and background, and GLM with Gaussian spatial smoothing and a threshold 
estimated from Gaussian random field (GRF) theory for an uncorrected p-value of 
0.05. For PCA, we renormalized the PCs such that ||wPCA||1=1 and used the same 
threshold as ANSPCA (i.e. 1/Nr). Also, only the first PC was used, since the second 
PC mainly detected non-active voxels (squares in Fig. 1b). Fig. 1 contains the syn-
thetic data results with the average true positive rate (TP) and false positive rate (FP) 
indicated. We note that TP and FP are computed only based on whether the voxels are 
correctly labeled as active, and not based on the cluster labels. 

Replicator dynamics (Fig. 1a) did not falsely declare any non-activated voxels as 
active (FP = 0.00), but many activated voxels were missed (TP = 0.15). In contrast, 
PCA (Fig. 1b) detected most of the activated voxels with its first PC (TP = 0.83),  
but also detected many non-active voxels (FP = 0.04). Neither of these methods was 
able to separate the two clusters. GMM behaved similarly to PCA with one of its 
mixtures encompassing both clusters, and the other mixture including mainly non-
active voxels (Fig. 1c). Hence, a high FP of 0.13 with only a TP of 0.77 was obtained.  
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(a) Replicator Dynamics 

TP = 0.15±0.02, FP = 0.00±0.00 
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(b) PCA 

TP = 0.83±0.03, FP = 0.04±0.01 
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(c) GMM 

TP = 0.77±0.24, FP = 0.13±0.14 
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(d) GLM with Gaussian spatial smoothing 

TP = 0.52±0.03, FP = 0.00±0.00 
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(e) Proposed ANSPCA 

TP = 0.82±0.04, FP = 0.00±0.00 
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(f) ANSPCA (at higher signal-to-noise ratio) 

TP = 1.00±0.00, FP = 0.00±0.00  

Fig. 1. Synthetic data results. t-map estimated using GLM with “dots” indicating the ground 
truth activated voxels. Voxels with a circle (square) correspond to the first (second) cluster 
detected. Note how ANSPCA was able to separate the two clusters and achieve a FP of 0.00. 
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(a) t-map, PD predrug 
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(b) ANSPCA, PD predrug 
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(d) t-map, PD postdrug 
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(e) ANSPCA, PD postdrug 

  
(f) GLM with FDR, postdrug 

Fig. 2. Real fMRI data results. (a) & (d) Left BA6 t-map of a PD subject before and after medi-
cation. (b) & (e) Proposed ANSPCA segments the BA6 into its known sub-regions, whereas (c) 
& (f) GLM appears to over-divide the BA6. 

GLM resulted in a FP of 0.00 with a TP of 0.52. Examining Fig. 1d, post-processing 
the voxels detected by GLM with connected component analysis could have separated 
the two clusters. Using ANSPCA, we were able to separate the two clusters as shown 
in Fig. 1e. Compared to PCA, with a mere decrease of 0.01 in TP, ANSPCA achieved 
a FP of 0.00 without any non-active voxels near the functional boundaries being falsely 
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declared. Being able to incorporate neighborhood information without falsely pooling 
the non-active boundary voxels is especially important for functionally segmenting 
ROIs with unclear sub-region boundaries such as the BA6 [15]. We thus further tested 
our method by varying the signal-to-noise ratio (SNR). For the case shown in Fig. 1f, 
we increased the SNR, which presumably would increase the correlation between the 
active and non-active boundary voxels if their information is mistakenly pooled in the 
correlation estimates. This increase in correlation would result in a higher chance of 
falsely declaring the non-active boundary voxels as part of the functional clusters [12]. 
Yet, as shown in Fig. 1f, ANSPCA was able to attain a TP of 1 without including any 
of the non-active voxels. We note that by incorporating neighborhood information and 
functional connectivity in addition to activation effects, ANSPCA was able to detect 
many voxels with t-values below the t-threshold determined from GRF. Also, upon 
detecting the larger cluster and removing the corresponding voxels from C, ANSPCA 
was able to adapt to the sparser activation pattern without falsely declaring voxels near 
the functional boundaries as part of the second cluster. 

4   Results and Discussion 

Results obtained by applying ANSPCA on the BA6 are shown in Fig. 2. We only 
included the left BA6 results for an exemplar PD subject due to space limitation. 
Nevertheless, ANSPCA did correctly separate the SMA and PM in all subjects, al-
though the SMA and PMd appeared partly joined in 3 subjects. For comparison, we 
applied replicator dynamics, PCA, GMM, and GLM to the data. However, except for 
GLM, the results obtained were similar to that in the synthetic data experiments with 
no spatially contiguous clusters identified. Thus, we only included the GLM results in 
favour of space. Also, the t-threshold estimated using GRF with Gaussian spatial 
smoothing of 8mm FWHM was found to be too stringent. Hence, we instead present 
the thresholded t-maps for an uncorrected p-value of 0.05 with FDR correction. 

For PD predrug, despite the unclear functional boundaries (Fig. 2a), ANSPCA was 
able to delineate the left BA6 into its known functional sub-regions, namely pre-
SMA, SMA proper, dorsal premotor cortex (PMd), and ventral premotor cortex 
(PMv) [15]. We argue that this delineation was attained by the additional functional 
connectivity information included in our proposed method, which was not modeled in 
the activation statistics. Also, incorporating neighborhood information enabled AN-
SPCA to detect PMd and PMv as two spatially contiguous clusters, whereas GLM 
over-divided PMd and PMv into multiple sub-regions. For PD postdrug, ANSPCA 
was again able to delineate the left BA6 into its constituent sub-regions. Interestingly, 
our results suggest that the extent of activation within the pre-SMA (Fig. 2b) reduced 
upon medication (Fig. 2e). This “focusing” effect conforms to prior findings in com-
putational model studies, where increased dopamine level was found to be associated 
with more focused activation patterns. In contrast, GLM split the SMA proper into 
multiple pieces with islands of activation scattered across the BA6.  

5   Conclusions 

We proposed a novel method that integrates multiple functional attributes such as 
activation effects, functional connectivity, and neighborhood information under a 
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single framework for functionally segmenting fMRI data. By adaptively combining 
PCA and replicator dynamics, our method facilitates functional segmentation of acti-
vation patterns with various degree of sparsity. Applying our method to synthetic data 
outperformed all other examined methods including replicator dynamics, PCA, 
GMM, and GLM. When applied to real data, the integration of the various functional 
attributes enabled our method to segment the BA6 into its constituent functional  
sub-regions, whereas other examined methods failed to attain such delineation. 
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