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Introduction: The most common imaging techniques used to guide 

orthopaedic interventions are X-ray-based [1], but ultrasound (US) imaging 

offers several advantages for intraoperative imaging as it is portable and 

produces realtime 2D or 3D images without exposing either the patient or 

surgical team to ionizing radiation. However US imaging has several 

limitations: user-dependent image quality, limited field of view, orientation 

dependence, and high levels of speckle. Bone boundaries typically appear as 

blurred bands with a thickness of 2-4mm which makes it difficult to accurately 

and automatically detect the bone surface [2]. Previously, we have shown it is 

possible to extract clear bone surfaces from 3D B-mode ultrasound images 

based on local phase features [3-5] with an accuracy of less than 0.4mm [5]. 

The local phase images are extracted by filtering the B-mode US image in the 

frequency domain with a Log-Gabor filter. Although successful results were 

achieved, the choice of filter parameters do affect the local phase method‘s 

sensitivity to typical US artifacts. We have therefore recently proposed a 

framework to automatically select these parameters using the bone surface 

information obtained from the B-mode US images [6]. 

In this study we show our first clinical results using local phase information to 

identify fractures from B-mode images using automatically-selected filter 

parameters. A standard pre-operative CT image was also available during the 

study which provided the gold standard surface match. 
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Methods: We obtained both CT scans and US images from a patient admitted 

to Vancouver hospital for a suspected radial fracture (this is the first case in a 

more extended study now underway). The CT scan was obtained during the 

standard clinical assessment. Once the presence of a fracture was confirmed, 

the patient was informed about the study and invited to participate. Informed 

consent for the use of 3D US and access to the previously-acquired CT scan 

was obtained. All US examinations in this clinical study were performed with a 

commercially-available real-time scanner (Voluson 730, GE Healthcare, 

Waukesha, WI) with a 3D RSP5-12 transducer. This is a mechanized probe in 

which a linear array transducer is swept through an arc range of 20°. During the 

scan, standard US coupling gel was applied to the skin over the scan sites for 

dorsal, volar, and radial views. The US image was processed using the 

algorithm described in [6]. 

The reference bone surface was extracted from the CT image by a relatively 

simple thresholding method as described in [7] and the US image was matched 

to the CT surface by matching selected anatomical landmarks (note: in our 

previous ex vivo bovine study, we used implanted fiducials to perform the 

registration, but fiducials could not be used in this clinical study) and 

computing the rigid body transformation using the AMIRA (TGS, San Diego, 

USA) landmark-based rigid registration algorithm. The algorithm transforms 

the input image (CT dataset) by applying a global translation and rotation by 

minimizing the sum of the squared distances between the corresponding 

fiducial points from the US dataset. The resolution of the CT volume was 

0.35mm´0.35mm´0.9mm and the one of the US was 0.19mm in all directions. 

Following registration, we computed a signed distance map around the bone 

surface contour extracted from the CT image (positive indicates higher in the 

image than the bone surface). We then transformed each non-zero value in the 

phase-processed US image to its corresponding location in the CT image and 

identified the distance value associated with this location. This produced a set 

of intensity/distance pairs. High intensity values confined to a zone near zero 

distance would indicate an accurately located surface. 

Results: Figure 1a shows a 2D slice of the pre-operative CT image and the 

corresponding B-mode US image on the top row. The bottom row in Fig1.a 

shows the extracted local phase images obtained using the Log-Gabor filter 

with empirical filter parameters (bottom left image) and the optimized filter 

parameters (bottom right). From the images we can clearly see the importance 

of filter parameter selection. The local phase symmetry method with the 

optimized filter parameters is less sensitive to typical US artifacts and extracts 

sharper bone boundaries. 
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This observation is also confirmed by comparing the scatter plots presented in 

Figure 1b and c. It is visually apparent that the PS image obtained using the 

optimized parameters is essentially free of typical US artifacts or soft tissue 

interfaces compared to the PS obtained using the empirically-set parameters. 

 

We also evaluated the correspondence between the two surfaces by identifying 

the location of the peak intensity pixel in each vertical column of the 3D US 
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data set. This value was 0.94mm (std 1.54) for PS surfaces extracted using 

empirical filter parameters and 0.37mm (std 0.74) using the optimized filter 

parameters. 

Discussion: We have demonstrated that a 3D US image processed using 

automatically-selected filter parameters can produce bone surfaces which lie 

well within 1 mm, on average, of the bone surface estimated from CT images. 

Our current study is investigating the hypothesis that US images processed in 

this way can be used to detect fractures reliably in the emergency room. 
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