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Abstract. Inference of brain activation through the analysis of functional mag-

netic resonance imaging (fMRI) data is seriously confounded by the high level 

of noise in the observations. To mitigate the effects of noise, we propose incor-

porating anatomical connectivity into brain activation detection as motivated by 

how the functional integration of distinct brain areas is facilitated via neural fi-

ber pathways. In this work, we formulate activation detection as a probabilistic 

graph-based segmentation problem with fiber networks estimated from diffu-

sion MRI (dMRI) data serving as a prior. Our approach is reinforced with a da-

ta-driven scheme for refining the connectivity prior to reflect the fact that not all 

fibers are necessarily deployed during a given cognitive task as well as to ac-

count for false fiber tracts arising from limitations of dMRI tractography. Vali-

dating on real clinical data collected from 7 schizophrenia patients and 13 

matched healthy controls, we show that incorporating anatomical connectivity 

significantly increases sensitivity in detecting task activation in controls com-

pared to existing univariate techniques. Further, we illustrate how our model 

enables the detection of significant group activation differences between con-

trols and patients that are missed with standard methods.  

Keywords: activation detection, connectivity, dMRI, fMRI, random walker 

1 Introduction 

Functional magnetic resonance imaging (fMRI) has become the primary modality for 

studying human brain activity. To map brain regions to function, standard analysis 

models the fMRI observations at each voxel as a linear combination of expected tem-

poral responses using the general linear model (GLM) [1]. This univariate approach 

does not model the integrative property of the brain, which is known to facilitate brain 

function [2]. To ameliorate this serious limitation, the use of local neighbourhood 

information has been proposed to regularize activation detection [3, 4]. Although such 

methods help suppress false spatially-isolated activations by encouraging spatial con-

tinuity, they completely ignore long-range functional interactions. The incorporation 

of functional connectivity information into task activation detection has also been put 

forth [5], but the approach taken estimates both activation effects and functional con-

nectivity from the same dataset, hence the information gain might be limited. Other 

works investigated the use of resting-state (RS) functional connectivity information to 



inform task activation detection [6] as motivated by the similarity of RS networks and 

those engaged during task [7]. Given the typically strong noise in fMRI data, explor-

ing other sources of information to regularize activation detection may be beneficial.  

Incorporating anatomical information extracted from diffusion MRI (dMRI) data 

into the investigation of functional brain dynamics has attracted growing interest since 

functional synchronization between spatially distinct brain regions is enabled through 

neural fiber pathways [8, 9]. Most of the early work focused on direct comparisons of 

structural and functional connectivity information learned separately from dMRI and 

fMRI data [8, 9]. More recently, merits of multi-modal integration for joint anatomi-

cal and functional connectivity inference have been explored [10-12]. Promising re-

sults in these studies indicate benefits of multi-modal integration though the scope of 

this strategy has mostly been limited to connectivity estimation. 

In this paper, we propose incorporating anatomical connectivity information into 

task activation detection. Given that fiber pathways serve as the physical substrate for 

functional interactions, we hypothesize that intrinsically connected brain areas would 

likely be in similar state, e.g. co-activate, during task [6]. Thus, informing activation 

detection with anatomical connectivity should presumably improve the detection sen-

sitivity. For this, we employ the graph-theoretic random walker (RW) formulation 

[13], which easily permits such an integrated scheme for estimating activation proba-

bilities. Posterior activation probabilities estimated by the RW formulation are guar-

anteed to be unique and globally-optimal [13], which makes RW an eminent choice. 

RW has been previously applied to task activation detection with functional connec-

tivity taken as the prior [5]. Here, we investigate the implications of complementing 

task activation detection analysis with anatomical connectivity information. To infer 

group activation from posterior activation probabilities, we devise a permutation test 

with activation probabilities as attributes, which we empirically show to provide 

stronger control on false positive rate than simply comparing the posterior probability 

of being activated, not activated, and de-activated. On real data, we demonstrate that 

incorporating anatomical connectivity increases sensitivity in detecting group activa-

tion over using univariate techniques. We further show that our method is able to 

detect significant group activation differences between schizophrenia patients and 

healthy controls, which are missed by standard analysis approaches. 

2 Method 

We propose integrating anatomical connectivity into activation effect estimation to 

improve inference of activation states of brain regions from noisy observations. We 

use the RW formulation [13] (Section 2.1) to integrate anatomical connectivity 

learned through tractography (Section 2.2) with the activation likelihood of regions of 

interest (ROIs) computed using a mixture model applied to activation statistics maps 

(Section 2.3). Group activation inference is performed on the resulting posterior acti-

vation probabilities using a permutation test (Section 2.4). After estimating a group 

activation pattern, we iteratively refine the anatomical connectivity prior by removing 

the links between non-active brain regions and re-estimate the posterior activation 

probabilities until the detected activation pattern stabilizes (Section 2.5). An overview 

of our multi-modal task activation detection approach is shown in Fig.1.  



 

 
 

Fig. 1. Overview of proposed multi-modal task activation detection approach. Anatomical 

connectivity prior and activation likelihood estimates, i.e. label priors, are integrated under the 

RW formulation to find the posterior activation probabilities. A permutation test is applied on 

these probabilities to infer group activation. The anatomical connectivity prior is then itera-

tively refined based on the activation states of the brain regions until convergence. 

2.1 Random Walker for Activation Estimation 

RW is a graph-based image segmentation approach, in which graph nodes (vertices) 

correspond to image voxels and graph edges connecting neighbouring nodes are as-

signed weights reflecting node similarity. In its original formulation [14], RW labels 

nodes based on the probability that a random walker starting from each node will first 

reach a pre-labeled seed given edge weights that bias the paths. This requires user-

specified seeds and does not utilize local observations at each vertex. Thus, in the 

context of activation detection with brain regions being the graph nodes and their 

interactions modeled through graph edges, this would require user-defined seeds for 

every functionally-disparate region and only functional interactions would be consid-

ered without accounting for activation effects. We thus adopt the formulation in [13], 

which overcomes the need for user interaction and integrates activation effects into 

the formulation as label priors. This is equivalent to adding a floating vertex for each 

label and connecting these floating vertices to every vertex in the original graph with 

label priors being the weights of the added edges [13]. In this formulation, posterior 

probabilities are calculated by the minimization of the following energy functional: 
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where x

s
 is an M×1 vector of unknown posterior probabilities of each ROI belonging 

to class s, L is an M×M weighted Laplacian matrix (Section 2.2), Λ
s
 is an M×M di-

agonal matrix having the prior probabilities of the ROIs belonging to class s on its 

diagonal (Section 2.3), K is the number of class labels, and M is the number of brain 

regions. The first term in (1) is a spatial term for modeling the interactions between 

graph vertices as characterized by L. The second term denotes the aspatial component 

for modeling the local observations at the vertices. In our context of activation detec-

tion, the spatial term models the anatomical connectivity information and the aspatial 



term models the activation effects. The method can thus be thought of as grouping 

brain regions into classes via random walk on an augmented graph, where edges in 

the original graph are weighted by anatomical connectivity information and edges 

leading to the floating nodes are weighted by activation effects. Assuming equal 

weighting between the spatial and aspatial energy terms in (1), it has been shown [13] 

that the posterior probabilities can be found by solving: 
 

,
1

ss
K

k

k
λxΛL 












 (2) 

 
where λ

s
 is an M×1 vector consisting of the diagonal elements of Λ

s
. Since L is posi-

tive semi-definite and Λ
k
 is strictly positive definite, their summation would be diago-

nally dominant. Hence, matrix inversion is possible for solving (2). Following [15], 

we set K=3 and define the class labels as deactive, nonactive, and active. For clarity, 

we explicitly denote the posterior probabilities for each class as pD, pN and pA, corre-

sponding to deactive, nonactive and active classes, respectively.  

2.2 Anatomical Connectivity Prior Estimation 

Let D be an M×M weighted adjacency matrix, where each element Dij is an estimate 

of the anatomical connectivity between brain regions i and j, set to fiber count in this 

work. The corresponding M×M normalized Laplacian matrix, L, of D is given by: 
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where di=Σj Dij is the degree of node i. A major difficulty with tractography is resolv-

ing fiber crossing regions where accuracy of most algorithms is seriously affected. In 

[16], it was proposed that multiplying D by itself may help address this problem by 

generating multi-step fibers from parts of fibers that might be split at crossing regions:  
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where exp( ∙ ) denotes the matrix exponential. D

k
=D*D*D*... and D

k
ij is the number 

of paths of length k connecting regions i and j. D
MS

 hence comprises all possible paths 

between each region pair, where indirect paths are more heavily penalized as these 

paths are potentially artifactual [16]. 

2.3 Activation Likelihood Estimation 

To estimate the activation likelihoods, which are used as label priors λ
s
 in RW, we 

first apply the classical GLM [1] to compute the intra-subject activation statistics: 
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where yj is the n×1 time course of ROI j, X is the n×r design matrix of expected re-

sponses, jβ̂ is an r×1 vector containing estimates of the activation effects, jβ , ej is the 

n×1 residual assumed to be white Gaussian noise after preprocessing, se( jβ̂ ) is the 

standard error of jβ̂ , tj is the r×1 vector of sought activation statistics, n is the number 

of time points, and r is the number of experimental conditions. Columns of the design 

matrix X are generated by convolving the canonical hemodynamic response function 

(HRF) with a boxcar time-locked to stimulus [1]. To compute the prior probabilities 

of ROIs belonging to each class, we fit a Gamma-Gaussian-Gamma (GGG) mixture 

model separately to the t-values of each condition, t
c
, i.e. c

th
 element of tj assembled 

across all ROIs [15]. The Gaussian distribution models the nonactive state and the 

Gamma distributions model the deactive and active states: 
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where μ is the mean and σ is the standard deviation of the Gaussian component, kD 

and kA are the shape parameters, and θD and θA are the scale parameters of the deacti-

vation (D) and activation (A) components, respectively. We employ the expectation-

maximization (EM) algorithm [17] to estimate the model parameters separately for 

each experimental condition c with the probabilities of t
c
 given the parameter esti-

mates used as the label priors λ
s
. These label priors and the Laplacian matrix given in 

Section 2.2 are combined through (2) to estimate the posterior activation probabilities. 

2.4 Group Activation Inference 

The high dimensionality of fMRI data elicits a high risk of false detection. To infer 

group activation from activation statistics, such as t-values, several methods that con-

trol for false positive rate have been proposed, e.g. Bonferroni correction, Gaussian 

random field theory, max-t permutation test [18]. For group activation inference from 

posterior activation probability maps, most studies directly threshold the posterior 

activation probabilities at 1/K, where K is the number of classes, arguing that activa-

tion inference from posterior activation probabilities does not suffer from false posi-

tives [19]. However, as we will empirically demonstrate in Section 4, directly 

thresholding the posterior probabilities is actually prone to false detection, necessitat-

ing a more rigorous activation inference method. To this end, we propose a permuta-

tion test for group inference from activation probabilities that controls for the false 

positive rate. Specifically, for each permutation, we first randomly select one third of 

the subjects and swap the posterior probabilities pA and pD of each selected subject. 

We note that this swap is done at the intra-subject level for all ROIs, hence the spatial 

pattern of the activation probabilities is preserved. Similarly, we swap pA and pN for 

another third of randomly selected subjects. We then compute the z-scores of pA for 

each permutation across all subjects. This procedure is repeated 10,000 times to gen-

erate the null distribution of activation probabilities of each ROI. We assign the p-



value for the activation likelihood of each ROI as the number of times the z-scores of 

permuted pA are greater than the z-scores of the original pA values divided by the total 

number of trials (in this case, 10,000). Under the null hypothesis that there is no acti-

vation, the z-score of the original pA value of an ROI would lie around the mean of 

the generated null distribution, resulting in a non-significant p-value around 0.5. Fi-

nally, false discovery rate (FDR) [20] is applied to these p-values to account for mul-

tiple comparisons. As shown in Section 4 on a synthetic case, this permutation test 

offers a much lower false positive rate compared to posterior probability thresholding 

while keeping the true positive rate at the same (or even at a higher) rate.  

2.5 Re-estimation of Group Activation Using Partial Connectome 

Since some of the estimated fiber tracts might be false due to tractography errors and 

not all fibers are necessarily employed during a given cognitive task, we propose 

restricting the anatomical connectivity prior to the subset of fibers that are likely to be 

active by iteratively refining the original connectivity prior, D
orig

, as follows:  
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where D

m
 is the M×M partial adjacency matrix found in iteration m with D

1
 set to 

D
orig

. li
m
 is the estimated activation state of ROI i during iteration m with a value of 1 

denoting activated and 0 denoting not activated or deactivated. We note that updating 

D
orig

 using the above scheme enables D
orig

 to gradually evolve as opposed to having 

its information from previous iterations completely discarded. The overall process 

proceeds by estimating the group activation map with D
1
 as the prior. We then refine 

D
1
 using (7) and (8), and repeat the process until the group activation map stabilizes. 

3 Materials 

After obtaining informed consent, fMRI data were collected from 13 healthy subjects 

(6 men, 7 women, mean age 27.46±6.38 years) and 7 schizophrenia patients (5 men, 2 

women, mean age 30.57±10.08 years). Each subject was first presented with words in 

four different contexts: associating, hearing, solving and reading, during a non-

scanned encoding session. The subjects were then presented the same set of words in 

a subsequent recall run during which fMRI data were acquired and subjects were 

asked to indicate the context in which the presented words were previously encoun-

tered. Image acquisition was performed on a Philips Achieva 3.0 T MRI scanner us-

ing a T2*-weighted gradient-echo spin pulse sequence with a repetition time of 2000 

ms, an echo time of 30 ms, a flip angle of 90°, a field of view of 240×240 mm, and an 

in-plane resolution of 80×80 pixels. Each volume comprised 36 axial slices of 3 mm 

thickness with a 1 mm gap. Each scan lasted for 920 s, which tallies to 460 fMRI 



volumes. For each subject’s data, motion correction and spatial normalization were 

performed using SPM8. The voxel time courses were then high-pass filtered to re-

move drifts and temporally whitened using an AR(1) model. For computing fiber 

count, we parcellated the brain into 500 ROIs [21] by applying Ward clustering [22] 

on voxel time courses concatenated across subjects. Voxel time courses within each 

ROI were averaged to generate ROI time courses. 

dMRI data were collected from the same subjects using a Philips Achieva 3.0 T 

MRI scanner with a TR of 7500 ms, a TE of 54 ms, an EPI factor of 59, an FOV of 

224×224 mm and an in-plane resolution of 256×256 pixels. Fifteen diffusion 

weighted volumes were acquired at a b-value of 800 s/mm
2
 in addition to a volume 

with no diffusion sensitization. Each volume consisted of 72 slices of 2 mm thickness 

with no gap. Acquisition time was 480 s. We used FSL [23] for eddy current correc-

tion and MedINRIA [24] for diffusion tensor estimation and fiber tractography. To 

facilitate the computation of fiber count, we warped our functionally derived group 

parcel map to the B0 volume of each subject. 

4 Results and Discussion 

We first present the synthetic test performed to assess our proposed permutation test 

(Section 2.4) as compared to the posterior probability thresholding approach com-

monly employed in the literature [19]. For evaluation on real data, we compare the 

sensitivity of our proposed approach in detecting group activation in controls against 

that of univariate techniques. We then contrast our method against classical schemes 

in detecting group activation differences between schizophrenia patients and controls.  

 

Synthetic test of group inference strategies. We performed a synthetic test carefully 

designed from activation probabilities calculated from the real data of healthy con-

trols. Specifically, after estimating the group activation map with our approach, we 

used the highest one third of pN among nonactive ROIs and the highest one third of pA 

among active ROIs to generate a pseudo ground truth of nonactivation and activation 

probability distributions at the intra-subject level. These pseudo ground truth distribu-

tions are assumed to be Gaussian with means and standard deviations set to that of the 

respective thirds of pN and pA. Out of a total of 100 synthetic datasets, each dataset 

comprised 13 subjects having 500 ROIs each, with 100 of them defined to be active. 

Random samples of pN and pA were drawn for each subject from the corresponding 

probability distributions. Deactivation probabilities were computed based on how 

posterior probabilities should sum to 1. Assessing group activation with the proposed 

permutation test resulted in a true positive rate (TP) of 0.819±0.038 and a false posi-

tive rate (FP) of 0.008±0.004, whereas thresholding pA at 1/3 gave a TP of 

0.374±0.049 and an FP of 0.097±0.015. One-sample t-tests among TPs and FPs of 

these two strategies declared the differences to be significant at p<10
-6

, demonstrating 

superior sensitivity and specificity. 

 

 



Detecting group activation in controls. We compare the sensitivity of our method 

against classical GLM and against inferring group activation from the activation like-

lihoods given by the GGG mixture model. We further compare the effect of using D 

and D
MS

 as the anatomical connectivity estimates (Section 2.2). Fig. 2 shows the 

number of detected ROIs for different p-value thresholds. Our approach is denoted as 

RW for the first iteration where the full anatomical adjacency matrix is used, and 

RWit for the following iterations with partial adjacency matrices. For the same speci-

ficity, our approach provided higher detection sensitivity than using the activation 

likelihoods given by the GGG mixture model, implicating the advantage of incorpo-

rating anatomical connectivity into activation detection. Iterating the procedure with 

refined anatomical connectivity estimates considerably improved detection. The pro-

cedure was iterated 100 times and for clarity, only the mean and standard deviations 

for the iterations with partial adjacency matrices were provided. It was observed that 

group activation map stabilized after 100 iterations, with only a couple of parcels 

changing labels in further iterations. This additional improvement provided by the 

refinement of the anatomical connectivity estimate suggests that only a subset of fi-

bers is employed during a given task. Hence, isolating the utilized fibers can be bene-

ficial. The improvement could also be partly due to removal of false fiber tracts aris-

ing from tractography errors. GLM (FDR corrected) provides more detection than our 

method at more liberal thresholds, but its performance varies considerably with p-

value thresholds. In contrast, our method provides more consistent results across p-

values. Comparing the results of using the original anatomical adjacency matrix 

versus the multi-step counterpart (denoted as RW-MS for the first, RW-MSit for the 

following iterations) suggests that some of the artifactual connections generated by 

the multi-step approach likely do not pertain to task activation.  

Qualitatively, the ROIs detected across all experimental conditions in healthy con-

trols largely match regions known to be involved in context memory tasks [25], which 

further validates our method. As shown in Fig. 3, the areas detected across all condi-

tions include superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus, su-

pramarginal gyrus, precentral gyrus, postcentral gyrus, angular gyrus, lateral occipital 

cortex, occipital pole, cingulate gyrus, lingual gyrus, hippocampus and insula.  
 



 
Fig. 2. Quantitative activation detection comparison. 

 

Detecting differences between patients and controls. To assess the significant acti-

vation differences between schizophrenia patients and control subjects, we compared 

two different types of context memory recall: (1) self-other source information moni-

toring (did I say this word or did I hear it?) and (2) task information monitoring (did I 

produce a semantic associate of this word or did I read it?). Both types of context 

memory are thought to be impaired in schizophrenia. This comparison corresponds to 

the contrast between associating/reading and solving/hearing conditions. We em-

ployed a max-t permutation test [18] on the pA values of the two groups for this con-

trast and observed a significant difference (p<0.05, corrected) in the left hippocam-

pus. Activity in this region was higher in the source monitoring condition for schizo-

phrenia patients relative to controls but lower in the task monitoring condition relative 

to controls. Applying the same test on the results of GLM or GGG mixture modeling 

approach failed to detect any group differences up to p<0.2. The left hippocampus is 

involved in reactivation and association of stored semantic knowledge to consolidate 

new information into existing semantic frameworks [26-28]. The implication of the 

significant difference in the left hippocampus is that, aberrant activity in this region 

could lead to different manifestations of poor performance in context memory. Re-

duced activity during task monitoring could relate to the episodic memory impair-

ments commonly observed in schizophrenia [29], which implies that underactivity in 

this region would lead to reduced reactivation of stored semantic knowledge for con-

text memory. Increased activity during source monitoring could relate to the source 

memory impairments commonly observed in schizophrenia [30], such that overactiv-

ity in this region would lead to increased perceptual context for both self and other 

source information, leading to more difficulty in distinguishing between these two 

sources in context memory. 
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Fig. 3. Activation patterns detected at p-value < 0.05. Green=detected by RW only. 

Blue=detected by GGG only. Red=detected both by RW and GGG. Each row corresponds to an 

experimental condition, top-to-bottom: associating, hearing, solving, reading.  

5 Conclusions 

We proposed a novel fiber connectivity integrated approach for group activation in-

ference. On real data of healthy subjects, we demonstrated that integrating dMRI and 

fMRI significantly increases sensitivity in detecting group activation compared to 

analyzing fMRI data alone. We further showed that incorporating a refined connec-

tome comprising anatomical connections linked only to the estimated active brain 

regions results in improved performance over using the full estimated connectome. 



Finally, we presented novel findings in activation differences between healthy con-

trols and schizophrenia patients that were missed with standard methods. Our multi-

modal integration strategy thus holds great promise for brain activity analysis.  
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