
REAL-TIME EXTRACTION OF LOCAL PHASE FEATURES FROM VOLUMETRIC
MEDICAL IMAGE DATA

Alborz Amir-khalili? Antony J. Hodgson† Rafeef Abugharbieh?

? Biomedical Signal and Image Computing Lab (BiSICL),
Department of Electrical and Computer Engineering; and

†Department of Mechanical Engineering, The University of British Columbia

ABSTRACT

We present a novel real-time implementation of local phase
feature extraction from volumetric image data based on 3D
directional (log-Gabor) filters. We achieve drastic perfor-
mance gains without compromising the signal-to-noise ratio
by pre-computing the filters and adaptive noise estimation pa-
rameters, and streamlining the remainder of the computations
to efficiently run on a multi-processor graphic processing
unit (GPU). We validate our method on clinical ultrasound
data and demonstrate a 15-fold speedup in computation time
over state-of-the art methods, which could potentially fa-
cilitate a wide range of practical applications for real-time
image-guided procedures.

Index Terms— Local Phase Features, Real-Time, Seg-
mentation, CUDA, GPU, Ultrasound, 3D Feature Extraction

1. INTRODUCTION

Image guided medical procedures commonly deployed in
minimally-invasive surgeries and, more recently, in emerg-
ing robot assisted interventions are generating increasing
demands for real-time data processing and analysis. With
the steady improvement in spatial and temporal scanning
resolution and the continuing increase in complexity of data
analysis algorithms, real-time processing is becoming a chal-
lenging bottleneck that requires thorough consideration in
most practical applications. Feature extraction from 3D im-
ages for critical tasks such as real-time segmentation and
registration are prime examples. For instance, image features
extracted from local phase information have recently been
shown to be robust in computer aided orthopedic applications.
In previous works [1] we demonstrated the effectiveness of
phase symmetry (PS) features for segmentation and localiza-
tion of bone fractures in 3D ultrasound. In an extension to
this work we implemented a step towards clinical ultrasound
guided intervention [2], in which we used PS features to
register intra-operative ultrasound to pre-operative computed
tomography (CT) images. Other local phase features such
as phase-asymmetry (PA) and phase-congruency (PC) can be

used to localize soft-tissue boundaries in imaging modalities
such as ultrasound, CT, and magnetic resonance imaging [3].

In a previous work by Eklund et al. [4] a fast GPU im-
plementation of phase feature extraction was proposed for the
purpose of multimodal image registration. Although their ap-
proach performs in real-time, it suffers from being highly spe-
cialized within a registration framework which only considers
phases features at a single scale in the three principal direc-
tions. In this paper, we present a novel and generalized tool
for real-time extraction of local image phase features that de-
ploys efficient pre-computations and GPU processing.

2. METHODOLOGY

In most stages of local phase feature extraction, each pixel
may be processed independently. The CUDA parallel pro-
gramming model developed by Nvidia Corporation (Santa
Clara, CA, USA) takes advantage of the hundreds of cores
available on a GPU to run a computationally expensive al-
gorithm in parallelized chunks, each operating independently
on a separate stream processor of the GPU. The libraries de-
signed for CUDA, which are included in its freely available
Software Development Kit, also contain many fundamen-
tal tools for scientific computation, such as the fast Fourier
transform (CuFFT).

There is strength in numbers, but a single core of a GPU
is still significantly slower than a CPU. Furthermore, there is
significant overhead associated with data transfer to and fro as
well as sharing of information. In this section, we present the
methods used in optimizing the implementation of local phase
feature extraction to fully take advantage of GPU capabilities.

2.1. Local Phase Feature Extraction

Phase features are local, unitless measures that can be derived
using quadrature odd and even (denoted o and e respectively)
wavelet pairs [5]. Such features can be extracted across a set
of different wavelengths (denoted s for scales) and at differ-
ent angles in 3D space (denoted r for orientations). Currently
available implementations of 3D local phase image feature

extraction based on log-Gabor filters generate the filters ‘on-
the-fly’. However, in this work, in order to speed up the al-
gorithm we split the algorithm into two parts, one that can
be computed off-line (pre-computed or templated at compile-
time) and another that is on-line (computed live as images are
acquired). Since the process of generating the filters is time-
consuming, all our filters are generated off-line and stored in
a filter-bank – as they can be generated independent of the
images. Only filters requested for computation are loaded to
GPU on demand (see subsection 2.2). These filters may be
requested either by manual parameter setup or automatically
using our parameterization method in [6].

(a) Original (b) PS (c) PA

Fig. 1. 2D cross-sections of synthetic 3D test pattern showing
different local phase features at 2 scales and 3 orientations.

The on-line portion of the algorithm computes, for ev-
ery image I and set of log-Gabor filters [Me

s,r,M
o
s,r], the

responses to these filters, which can be represented as the
following vectors: [es,r, os,r] = [I ∗ Me

s,r, I ∗ Mo
s,r]. The

magnitude of these vectors can be represented by As,r =

(e2s,r + o2s,r)
1
2 . For the sake of speed, the convolution of the

image with the filter pairs is done in the Fourier domain using
element-wise multiplication (detailed in subsection 2.3).

Local phase features, such as PS and PA (Figure 1), are
defined as the normalized thresholded combinations of filter
pair responses, as follows:

PS(x, y, z) =

∑
∀s,r
b[|es,r(x, y, z)| − |os,r(x, y, z)|]− Trc∑

∀s,r
As,r(x, y, z) + ε

(1)

PA(x, y, z) =

∑
∀s,r
b[|os,r(x, y, z)| − |es,r(x, y, z)|]− Trc∑

∀s,r
As,r(x, y, z) + ε

(2)

where Tr is a threshold calculated from noise energy esti-
mated for each filter orientation. Noise is assumed to be addi-
tive and Gaussian and is estimated from the noise response to
the smallest scale filter pair (subsection 2.4). PS is ideal for
localizing ridge-like features (empty box in Figure 1b) such
as bone in ultrasound (Figure 3) and PA is used to define step-
edges (full box and gradient in Figure 1c).

2.2. Filter Generation

Filters are uploaded to the GPU only if there is a significant
change in the anatomy being imaged. This change may be de-
fined in terms of rotational tolerance of the anatomy as a func-
tion of the standard deviation of angular filter components.

Fig. 2. Flow chart of methodology

(a) 3D rendered B-mode (b) Overlaid PS

Fig. 3. Bone surface extracted from 3D B-mode ultrasound
scan of a hip phantom using PS at 2 scales and 3 orientations.

Data transfer rates between host RAM and GPU memory are
a significant bottleneck. It takes on average 6.28 ms to trans-
fer a volume with 1283 double precision (64-bit) gray-scale
voxels (approximately 16MB) from RAM to a professional-
grade Nvidia Tesla C2050 video card. This transfer occurs
twice per frame: the image captured from the device is trans-
ferred to GPU, processed and then transferred back to the host
to be stored or displayed.

In Figure 3, a total of 6 filters (2 scales and 3 orientations)
were required to produce the desired result. The filters are
generated in the frequency domain and each filter is the same
size as the image to allow for quick element-wise multiplica-
tion of the filter elements with the Fourier transformed image.
Since the scale isolating components of the filters are essen-
tially Gaussian radial band-pass filters, they can be generated
separately from the angular (orientation related) components
in the Fourier domain. The filters are combined to create dif-
ferent angular filters at each scale. In the shown examples
only 5 (s + r) filters need to be transferred to the GPU. If 3
scales and 4 orientations are desired, 7 filters would be trans-
ferred instead of 12.

In our implementation, all filters are transferred together
to minimize overhead costs.Without using page-locked or
pinned memory, the time it takes to transfer 6 filters together
(96 MB) is 28 ms (effective speed: 3.3 GB/s) which is less
than the time it takes to transfer them individually 6x6.28 ms
(effectively 2.55 GB/s).

2.3. Fourier Transform

The transformation of the image into the Fourier domain is
performed on the GPU using the Nvidia CuFFT libraries. Af-
ter the image has been convolved (element-wise multiplica-
tion in Fourier domain) with every filter in parallel, the resul-
tant products are concatenated into a 1D array and subjected
to an inverse transform as a whole. The CuFFT libraries are

optimized to perform in a parallel manner. The performance
gain of CuFFT increases with the size of the array being oper-
ated on and optimal performance is achieved when the image
volume dimensions are a power of 2 (e.g. 1283 voxels).

2.4. Noise Parameter Estimation

Noise parameter estimation of local phase features is critical
for retaining a high signal-to-noise ratio in clinical applica-
tions such as accurate bone surface extraction [1]. The log-
Gabor filters used in calculating the local phase features are
very sensitive to noise, especially at small scales, since a high-
frequency noise response is typically present at smaller wave-
lengths. Here we employ Kovesi’s [7] original noise estima-
tion technique with the following three assumptions: Noise is
additive, the noise power spectrum is constant (white noise),
and the features of interest only occur at isolated locations in
the image.

In 3D, assuming that the smallest scale (s = 1) is predom-
inantly noise, the noise signal gr at a certain orientation r is
estimated by evaluating the expected total energy of the im-
age filter response at the smallest scaleA1,r and dividing it by
the expected total energy spectrum of the corresponding filter
pair M1,r. Denoting the Fourier Transform F(f) = f̂ , as
per Parseval’s theorem, the magnitude of the noise spectrum
is defined by:

|ĝr|2 '
E(A2

1,r)

E(M̂2
1,r)

.

The numerical calculation of E(M̂2
1,r) of the filter itself

is done off-line during the filter generation step. However,
the total energy of A1,r has to be computed on-line. The ex-
pected value of A2

1,r is estimated, from its median response,
in order to increase the performance of the algorithm. The
magnitude of the energy vector A1,r will be primarily noise
with a Rayleigh distribution, with some contamination as a
result of image feature responses. Therefore the expected en-
ergy of A2

1,r may be characterized by a χ2 distribution with
2 degrees of freedom. We can achieve a robust estimate by
calculating the median of A2

1,r as:

E(A2
1,r) =

−median(A2
1,r)

ln(1/2)
.

The noise threshold T at orientation r is then calculated
from this estimate. Let the variable k be a multiple of σR,r

(standard deviation of the Rayleigh distribution describing the
noise energy response), typically ranging from 2 to 3. Then,
Tr = µR,r + kσR,r (see Kovesi [7] for derivation) where:

µR,r = σG,r

√
π

2
; σR,r = σG,r

√
4− π
2

σG,r = |ĝr|

√√√√E

(∑
∀s

M2
r,s

)
+ 2E

(∑
si<sj

(Mr,si ·Mr,sj

)

Computing the median ofA2
1,r is time consuming. CUDA

Thrust libraries are used to calculate the median value in this
case as the GPU quickselect algorithm performs poorly on
the GPU [8]. Even with the CUDA Thrust libraries, the noise
estimation step is relatively costly compared to the other parts
of the algorithm (see Figure 4).

Apply Filters
cuFFT

Normalization
Noise Estimation

Generate PS

0 5 10 15 20 25 30 35 40 45 50
Time (ms)

Fig. 4. Detailed breakdown of on-line runtime costs at 3 ori-
ents and 1 scale, running on Tesla c2050.

3. RESULTS AND DISCUSSION

To enable direct comparisons, the algorithm was prototyped
in MATLAB as a benchmark, based on the code provided by
Kovesi (available online). The results tabulated in Table 1
were obtained running MATLAB R2011b on a dual proces-
sor host machine with two Xeon x5472 CPUs @ 3GHz (Intel
Corp., Mountain View, California, US) with 8GB of RAM
using the same volume illustrated in Figure 3. Some func-
tions in MATLAB such as FFT have been highly optimized
to take advantage of all eight cores of the Xenon machine.
A parallel CPU implementation using parfor and a pool of
eight MATLAB workers performed three times slower than a
standard implementation in our experiments.

The only other publicly available 3D implementation of
local phase feature extraction by Hatt [9] (PS only C++ code)
was then clocked on the same Xeon machine. In order to
ensure fairness in comparison, the times reported in Table 1
do not include filter generation for all compared methods, in-
cluding Hatt’s. It is worth noting that the reported speed-ups
over Hatt’s algorithm are rather conservative as Hatt’s imple-
mentation does not include the costly noise estimation step.
The threshold used instead is set to a constant value passed
into the algorithm as a filter parameter.

Our proposed algorithm was then ported to CUDA and
executed on a host machine with a Tesla c2050 GPU. The re-
sults shown only include the on-line portion of the code. This
includes: loading a single volume from host to device, FFT
convolution, noise estimation, and PS calculation. The time
it takes to transfer the filters is not included as this operation
does not occur frequently.

4. CONCLUSIONS AND FUTURE WORK

We proposed a novel efficient implementation for real-time
extraction of local phase features from volumetric images.
We also presented quantitative validation on real 3D medical

Table 1. Averaged double precision runtimes (mean of 20 trials) of our algorithm (MATLAB and CUDA) compared to Hatt [9]
Orientations Scales Benchmark Hatt Proposed Algorithm Speed-up factor Speed-up factor

MATLAB (CPU) C++ (CPU) CUDA (GPU) CUDA/MATLAB CUDA/Hatt
r = 1 s = 1 430 ms 674 ms 30 ms 14.3 22.5

s = 2 625 ms 949 ms 36 ms 17.4 26.4
s = 3 787 ms 1204 ms 42 ms 18.7 28.7
s = 4 964 ms 1450 ms 48 ms 20.1 30.2

r = 2 s = 1 639 ms 993 ms 52 ms 12.3 19.1
s = 2 989 ms 1472 ms 66 ms 15.0 22.3
s = 3 1270 ms 2086 ms 78 ms 16.3 26.7
s = 4 1609 ms 2545 ms 90 ms 17.9 28.3

r = 3 s = 1 918 ms 1294 ms 74 ms 12.4 17.5
s = 2 1396 ms 2049 ms 96 ms 14.5 21.3
s = 3 1851 ms 2787 ms 116 ms 16.0 24.0
s = 4 2306 ms 3556 ms 136 ms 17.0 26.1

r = 4 s = 1 1198 ms 1523 ms 97 ms 12.4 15.7
s = 2 1825 ms 2655 ms 127 ms 14.4 20.9
s = 3 2447 ms 3646 ms 155 ms 15.8 23.5

data demonstrating that our CUDA implementation results in
a minimum of 12-fold speedup over our MATLAB bench-
mark and 15-fold speedup over Hatt’s [9] implementation.

The performance of our algorithm is expected to increase
in the future as it scales very well the hardware capabilities
of the GPU device. Figure 5 provides a comparison between
the MATLAB benchmark, an entry level GPU (Nvidia NVS
5400M mobile graphic card with 1GB of memory), and a pro-
fessional GPU (Nvidia Tesla c2050). Both of these GPUs
are based on Nvidia’s previous hardware architecture, Fermi.
Nvidia is reporting a 3-fold increase in single-precision float-
ing point performance per Watt of power with their new Ke-
pler architecture. This algorithm will perform considerably
faster on the next generation of Kepler based Tesla cards, ex-
pected to become available by the end of 2012.

MATLAB

Entry Level GPU

Professional GPU

0 50 100 150 200 250 300 350 400

FFT
transformations
Noise Calculation
Other

Time (ms)

Fig. 5. On-line runtime of PS with 3 orientations and 1 scale.

We will extend our work by incorporating the automatic
parameterization methods [6] in real-time such that they can
both be implemented within our Ultrasound to CT registration
framework [2].

5. REFERENCES

[1] I. Hacihaliloglu, R. Abugharbieh, A.J. Hodgson, and
R.N. Rohling, “Bone surface localization in ultrasound

using image phase-based features,” UMB, vol. 35, no. 9,
pp. 1475–1487, 2009.

[2] A. Brounstein, I. Hacihaliloglu, P. Guy, A.J. Hodgson,
and R. Abugharbieh, “Towards real-time 3D US to CT
bone image registration using phase and curvature feature
based GMM matching,” MICCAI, pp. 235–242, 2011.

[3] A. Wong and W. Bishop, “Efficient least squares fusion
of MRI and CT images using a phase congruency model,”
Pattern Recognition Letters, vol. 29, no. 3, pp. 173–180,
2008.

[4] A. Eklund, M. Andersson, and H. Knutsson, “Phase
based volume registration using CUDA,” in ICASSP.
IEEE, 2010, pp. 658–661.

[5] P. Kovesi, “Symmetry and asymmetry from local phase,”
Tenth Australian Joint Converence on Artificial Intelli-
gence, pp. 2–4, 1997.

[6] I. Hacihaliloglu, R. Abugharbieh, A. Hodgson, and
R. Rohling, “Automatic data-driven parameterization for
phase-based bone localization in US using log-gabor fil-
ters,” Advances in Visual Computing, pp. 944–954, 2009.

[7] P. Kovesi, “Image features from phase congruency,”
Videre: Journal of Computer Vision Research, vol. 1, no.
3, pp. 1–26, 1999.

[8] G. Beliakov, “Parallel calculation of the median and order
statistics on GPUs with application to robust regression,”
arXiv preprint arXiv:1104.2732, 2011.

[9] C. Hatt, “Multi-scale steerable phase-symmetry filters for
ITK,” 2012.

