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Abstract. Inferring brain activation from functional magnetic resonance imag-
ing (fMRI) data is greatly complicated by the presence of strong noise. Recent 
studies suggest that part of the noise in task fMRI data actually pertains to on-
going resting state (RS) brain activity. Due to the sporadic nature of RS tem-
poral dynamics, pre-specifying temporal regressors to reduce the confounding 
effects of RS activity on task activation detection is far from trivial. In this pa-
per, we propose a novel approach that exploits the intrinsic task-rest relation-
ships in brain activity for addressing this challenging problem. With an approx-
imate task activation pattern serving as a seed, we first infer areas in the brain 
that are intrinsically connected to this seed from RS-fMRI data. We then apply 
principal component analysis to extract the RS component within the task fMRI 
time courses of the identified intrinsically-connected brain areas. Using the 
learned RS modulations as confound regressors, we re-estimate the task activa-
tion pattern, and repeat this process until convergence. On real data, we show 
that removal of the estimated RS modulations from task fMRI data significantly 
improves activation detection. Our results thus provide further support for the 
presence of continual RS activity superimposed on task fMRI response.  
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1 Introduction 

Functional magnetic resonance imaging (fMRI) has become a primary means for 
studying human brain activity. To map brain areas to function, the standard analysis 
approach models fMRI observations as a combination of expected temporal responses 
using a general linear model (GLM) [1]. However, the strong noise in fMRI data aris-
ing from confounds, such as scanner drifts, motion artifacts, and physiological effects, 
greatly hampers reliable detection of brain activation. Recent studies have shown that 
the brain is not idle in the absence of external stimulus [2]. Instead, spontaneous 
modulations in brain activity, referred to as resting state (RS) activity, are continually 
present [2]. Moreover, there is evidence indicating that RS activity actually persists 
during task performance [3]. Thus, part of the noise observed in task fMRI data in-



deed ascribes to ongoing RS activity. The frequency range at which RS activity re-
sides is typically found to be between 0.01 to 0.1 Hz [2], which overlaps with the 
stimulus frequencies employed in most task-based fMRI studies. Thus, standard high 
pass filtering e.g. at 1/128 Hz, which is the default cutoff frequency in the SPM soft-
ware, for removing temporal drifts in task fMRI data, would not account for ongoing 
RS modulations. Also, unlike task-evoked responses, which are time-locked to stimu-
lus, the time at which RS activity peaks and troughs is difficult to predict. Hence, pre-
specifying temporal regressors to model RS activity is non-trivial.  

Albeit its seemingly sporadic temporal dynamics, RS activity is not random [2]. 
Rather, strong synchrony in RS modulations between specific brain areas has been 
observed in numerous studies [2]. In fact, many of the detected RS networks exhibit 
high resemblance to networks seen in task experiments [4]. Further supporting this 
finding is a recent work [5] that demonstrated enhanced sensitivity in task activation 
detection by incorporating an RS-connectivity prior. In addition, studies that jointly 
examined RS-fMRI and diffusion MRI data indicate an anatomical basis for RS activ-
ity [6, 7]. In particular, high anatomical connectivity typically predicts high functional 
connectivity [6, 7]. Thus, the spatial patterns of RS networks would presumably be 
constrained by the underlying fiber pathways [6, 7]. Taken together, these findings 
suggest that there is spatial structure in RS activity and that the spatial structure of 
ongoing RS activity during task would likely remain similar to that during rest [3].  

To the best of our knowledge, the only previous work that attempted to tackle this 
challenging problem of RS activity removal from task fMRI data was by Fox et al. 
[3]. Specifically, the authors showed that for a right handed motor task, subtracting 
out fMRI signals in the right somatomotor cortex (RSC) from the left somatomotor 
cortex (LSC) significantly reduced inter-trial variability in fMRI response. The basis 
of this approach is twofold. First, the presence of coherent RS activity between the 
LSC and RSC is well established [8], and is assumed to persist during task perfor-
mance. Second, right handed motor tasks typically activate only the LSC, thus signals 
in RSC would largely correspond to RS activity. Subtraction of signals in RSC from 
LSC would thereby remove the RS components within the task fMRI time courses of 
the LSC. However, not all tasks evoke only lateralized activation. Thus, simply sub-
tracting signals in one side of the brain from the other side is not always suitable for 
removing RS modulations from task fMRI data. 

In this paper, we propose a novel approach for RS activity removal in more general 
settings. The key challenge to this problem is that RS activity is internally-driven by 
the brain, as opposed to being evoked by external stimulus with known timing. It is 
thus not obvious how the temporal dynamics of RS modulations that occurred during 
task performance can be determined a priori. Representative time courses reflective of 
ongoing RS activity must hence be extracted from the task fMRI data itself. Since the 
brain comprises multiple networks [4], the RS modulations superimposed on the 
fMRI responses of the task-activated brain areas would be specific to the RS network 
in which these brain areas belong. Extracting RS activity from task fMRI data would 
thus require knowing the parts of the brain that are activated and their intrinsically-
connected areas, which introduces a circular problem. To deal with this issue, we 
employ an iterative strategy in which we first apply seed-based analysis [8] with an 



approximate task activation pattern being the seed to infer the intrinsically-connected 
brain areas from RS-fMRI data. Assuming the spatial structure of RS networks is 
sustained during task performance [3], we extract RS modulations from the task fMRI 
time courses of the identified brain areas and re-estimate the task activation pattern 
with the learned RS activity as confound regressors. On real fMRI data collected from 
19 subjects undergoing a checkerboard-viewing task, we show that repeating this 
process to remove ongoing RS modulations from task fMRI data significantly im-
proves task activation detection. 

2 Proposed RS Activity Removal Approach 

Motivated by the recent finding that RS activity contributes to the noise in task fMRI 
data [3], we propose a novel approach for removing such confounds to improve acti-
vation detection. Our approach consists of three steps, as summarized in Fig. 1.  
 

 

Fig. 1. Depiction of proposed RS activity removal approach. Xi = [Xtask|X
i
confounds] is a regressor 

matrix, where Xtask corresponds to task regressors and Xi
confounds corresponds to confound 

regressors specific to subject i. Yi are the task fMRI time courses of subject i. ΛA is the set of 
activated brain areas common across a group of subjects. Zi are the RS-fMRI time courses of 
subject i. Λi

C is the set of brain areas estimated to be intrinsically connected to ΛA for subject i. 
yi

RS is the estimated RS activity time course of subject i, which is entered into Xi as a confound 
regressor for re-estimating the group activation pattern ΛA. The three steps: group activation 
detection, RS network detection, and RS activity estimation, are repeated until ΛA stabilizes. 

In brief, we first approximate the task activation pattern that is common across sub-
jects using standard univariate analysis [1] (Section 2.1). With the detected activation 
pattern serving as a seed, we infer brain areas that are intrinsically-connected to this 
seed from RS-fMRI data of each subject [8] (Section 2.2). Assuming that the spatial 
structure of RS networks remains fixed during task [3], we apply principal component 
analysis (PCA) to extract the RS component from the task fMRI time courses of the 
identified intrinsically-connected brain areas (Section 2.3). The estimated RS modula-
tions are then used as confound regressors to re-estimate the task activation pattern of 
the group, and this process is repeated until the detected activation pattern converges. 
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2.1 Seed Region Extraction 

Our approach begins with the estimation of an approximate task activation pattern 
(i.e. without accounting for ongoing RS modulations). A standard general linear mod-
el (GLM) is first applied to compute the intra-subject activation effects [1]:  
 

 Yi
 = Xiβi + Ei, (1) 

 
where Yi is an t×d matrix containing the task fMRI time courses of d brain areas of 
subject i, Xi = [Xtask|X

i
confounds] is an t×p matrix with Xtask corresponding to task 

regressors and Xi
confounds corresponding to confound regressors specific to subject i [1], 

βi is an p×d activation effect matrix to be estimated, and Ei is an t×d residual matrix. 
Due to the strong noise in task fMRI data, activation patterns estimated at the intra-
subject level might be inaccurate [9]. Therefore, we opt to combine information 
across subjects in generating a group activation map, which is then used as a seed for 
identifying intrinsically-connected brain areas (Section 2.2). To infer group activa-
tion, we apply a max-t permutation test [10] on βi of all subjects, which implicitly 
accounts for multiple comparisons and provides strong control over false detections. 
Group activation is declared at a p-value threshold of 0.05. We denote the set of de-
tected brain areas as ΛA. 

2.2 RS Network Detection 

With the detected group activation pattern taken as a seed, our goal is to identify brain 
areas that belong to the same RS network as the seed, so that we can extract RS mod-
ulations specific to this RS network. To proceed, we first average the RS-fMRI time 
courses within the detected activated brain areas in generating a seed time course for 
each subject. We then apply the standard seed-based analysis [8] to find brain areas 
intrinsically-connected to this seed for each subject i: 
 

 Zi
~s = zi

sw
i + Ωi, (2) 

 
where Zi

~s is an n×(d-|ΛA|) matrix containing the RS-fMRI time courses of all brain 
areas except those in ΛA, |ΛA| is the number of brain areas in ΛA, zi

s is an n×1 vector 
containing the seed time course, wi is an 1×(d-|ΛA|) vector with each element reflect-
ing the correlation between the seed and each brain area not in ΛA, and Ωi is an n×(d-
|ΛA|) residual matrix. Statistical significance of each element of wi is declared at a p-
value threshold of 0.05 with false discovery rate (FDR) correction [11] to account for 
multiple comparisons. FDR correction is used instead of max-t permutation test due to 
correlations between brain volumes at adjacent time points, which violates the inde-
pendent sample assumption in max-t permutation test [10]. A max-t permutation test 
could be applied to identify brain areas that are significantly correlated with the seed 
at the group level. However, compared to task-based experiments, RS experiments are 



less prone to motion artifacts, which constitute a major part of fMRI noise. Reliable 
RS networks could thus potentially be extracted at the intra-subject level. We hence 
opt to perform intra-subject seed-based analysis to retain subject-specific information. 
We denote the set of brain areas significantly correlated with the seed as Λi

C. 

2.3 RS Activity Estimation and Removal 

After finding the set of brain areas that is intrinsically-connected to the estimated task 
activation pattern for each subject i, the next step is to extract the RS components 
from the task fMRI time courses of these brain areas, which we denote as Yi

C. To 
target the specific frequency range at which RS activity resides, we first band-pass 
filter each column of Yi

C at cut-off frequencies of 0.01 and 0.1 Hz. Since the estimat-
ed task activation pattern is only an approximation without accounting for the con-
founding effects of RS activity, some intrinsically-connected brain areas might in fact 
be activated considering the resemblance between task and RS networks [4]. Thus, 
Yi

C might contain task signals. To remove the task-related response in Yi
C, we apply 

PCA through eigen-decomposition to separate Yi
C into task and non-task components: 

 

 Ci = UiDiUiT, (3) 

 
where Ci is the d×d covariance matrix of Yi

C, Ui is an d×d matrix containing the ei-
genvectors of Ci, and Di is an d×d matrix containing the eigenvalues of Ci along the 
diagonal. The columns of Ui are ordered such that the first column, Ui

1, corresponds 
to the largest eigenvalue. To identify the task-related components, we compute the 
correlation between each column of Ui and the task regressor. Statistical significance 
in correlation is declared at a p-value threshold of 0.05 with FDR correction. For the 
data examined in this work (Section 3), the task regressor is found to be most signifi-
cantly correlated with Ui

1. This high correlation between Ui
1 and the task stimulus, as 

shown in Fig. 1, signifies a definite need for task response removal from Yi
C. We 

remove the task components by reconstructing Yi
C with the significantly correlated 

columns of Ui discarded. We note that other decomposition techniques, such as inde-
pendent component analysis (ICA) [12], could be also used. We defer comparisons 
between various decomposition techniques for future work.  

Denoting the reconstructed Yi
C as Vi

~task, we take the mean of Vi
~task over brain are-

as to generate a representative RS activity time course for each subject i, yi
RS, which 

we enter into (1) as a confound regressor to re-estimate the task activation pattern. 
This process is repeated until the group activation pattern ΛA stabilizes. 
  



 

Fig. 1. Dominant principal component (PC) extracted from time courses of intrinsically-
connected brain areas. The thick red and blue lines correspond to task regressor and mean dom-
inant PC across subjects. Each thin line corresponds to the dominant PC of a single subject. 

3 Materials 

For testing our proposed RS activity removal approach, we used the publicly available 
Multiband Test-Retest Pilot Dataset, which was released as a part of the 1000 Func-
tional Connectomes Project1. Excluding subjects with missing brain volumes, the 
dataset comprises 19 subjects (14 men, 5 women, mean age 33.1±13.2 years). Each 
subject performed a passive viewing task in which a checkerboard was displayed on a 
monitor for 20 s, with 20 s of rest interleaved between stimulus blocks. The total task 
duration was approximately 2.5 minutes. Task fMRI data were acquired with a TR of 
1.4 s and a voxel size of 2 mm (isotropic). RS-fMRI data of 5 minutes duration were 
also collected with a TR of 2.5 s and a voxel size of 3mm (isotropic). 

For each subject’s RS-fMRI data, motion correction and spatial normalization were 
performed using SPM8. The voxel time courses were then bandpass filtered at cutoff 
frequencies of 0.01 and 0.1 Hz with white matter and cerebrospinal fluid confounds 
regressed out. In accordance with how the human brain is estimated to comprise ~500 
functional regions [13, 14], we functionally divided the brain into 500 parcels as fol-
lows. First, we used the Freesurfer atlas to divide the brain into 112 anatomical re-
gions. We then functionally subdivided each anatomical region into Nr parcels, where 
Nr is chosen based on the number of voxels within each anatomical region relative to 
the total number of voxels. Parcellation was performed by concatenating RS-fMRI 
voxel time courses across subjects and applying normalized cut [15] to the correlation 
matrix computed from the concatenated time courses. RS parcel time courses were 
then generated by averaging the RS-fMRI voxel time courses within each group par-
cel. For task fMRI data, similar preprocessing steps were performed, except a high-
pass filter at 1/128 Hz was used to remove temporal drifts. Task fMRI time courses 
within each group parcel were averaged to compute task parcel time courses. 

                                                            
1 The Multiband Test-Retest Pilot Dataset is available online at: 

http://fcon_1000.projects.nitrc.org/indi/pro/eNKI_RS_TRT/FrontPage.html 
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4 Results and Discussion 

To validate our proposed approach, we compared applying the standard univariate 
analysis [1] with and without RS activity removal in detecting group activation. We 
denote these two cases as RSR and GLM, respectively. For increased group activation 
detection to be a legitimate validation criterion, strong control over false positive rate 
is critical. For this, we used the max-t permutation test [10] for both RSR and GLM, 
which implicitly accounts for multiple comparisons, provides strong control on false 
positive rate, and generates less conservative t-value thresholds than Gaussian random 
field theory and Bonferroni correction [10]. 

Fig. 2 shows the number of detected parcels for different p-value thresholds. For 
the same specificity, our approach provided higher detection sensitivity than GLM in 
general. To assess whether the increased detection was statistically significant, we 
employed a “parcel-label” permutation test. Specifically, for each permutation, we 
first randomly selected half of the parcels and exchanged the labels (i.e. active or non-
active) assigned by RSR and GLM for each p-value threshold. We then computed the 
difference in the number of detected parcels with and without RS removal, which we 
denote as Ndiff. This procedure was repeated 1000 times to generate a null distribution. 
The original Ndiff was found to be greater than the 95th percentile of the null distribu-
tion for all corrected p-value thresholds within the typical range of [0.01, 0.05]. The 
detection improvement with RSR compared to GLM was thus statistically significant. 
We note that improvement in detection was observed even with just one iteration of 
RSR, and the detected activation pattern stabilized within two iterations, i.e. no more 
than a couple of parcels changing labels in subsequent iterations.  

 

 

Fig. 2. Activation detection comparison. Number of parcels  
detected with significant activation vs. p-value thresholds. 
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To show that there is specific temporal structure in the estimated RS activity time 
courses that gave rise to the observed detection improvement, we applied RSR on 
temporally-permuted RS activity time courses 100 times. The average number of 
detected parcels over the 100 permutations (RSR-Temp. Rand. in Fig. 2) was found to 
be similar to that of GLM. The difference in detection performance between RSR and 
RSR-Temp. Rand. was statistically significant based on the parcel-label permutation 
test with a threshold set at the 95th percentile of the null distribution. Our results thus 
indicate that there is certain temporal structure in the estimated RS activity time 
courses that is critical for successful RS activity removal.  

Since the brain comprises multiple networks [4], not all parcels would contain the 
same RS modulations as those superimposed on the underlying task activated brain 
areas. To illustrate this point, we applied RSR with RS modulations extracted from Nc 
randomly selected parcels (excluding parcels identified by RSR), where Nc is the 
number of intrinsically-connected brain areas originally determined with RSR. The 
average number of detected parcels over 100 random subsets of parcels (RSR-Spat. 
Rand. in Fig. 2) was found to be similar to that of GLM for p-value thresholds be-
tween 0 and 0.02, and modestly better than GLM for p-value thresholds above 0.02. 
We suspect the increased detection arises from how some parcels might be intrinsical-
ly-connected to the task-evoked brain areas, but the estimated correlations were de-
clared not significant due to noise. Such parcels would contain RS modulations com-
mon to the task activation pattern, hence the increased activation detection observed. 
Nevertheless, the increase was not statistically significant based on the parcel-label 
permutation test with a threshold set at the 95th percentile of the null distribution. 

Qualitatively, RSR additionally detected brain areas adjacent to those found by 
GLM (Fig. 3). More bilateral activation was also found with RSR. The detected brain 
areas lie within the primary visual cortex and the extrastriate cortex, which are known 
to pertain to visual checkerboard stimulus [16, 17], hence confirming our results. 
 

 

Fig. 3. Detected activation patterns. Three axial slices shown. Parcels detected at p-value < 0.05 
(corrected). Red = detected by RSR only. Purple = detected by both GLM and RSR. 



5 Conclusions 

We proposed a novel approach for the estimation and removal of continual RS activi-
ty in task fMRI data. Exploiting how the spatial structure of RS networks are con-
strained by the underlying fiber pathways hence would remain similar during task 
performance, our approach first extracts RS modulations from task fMRI time courses 
within brain areas that are significantly correlated with an approximate task activation 
pattern at rest. The estimated RS modulations are then entered into a GLM as con-
found regressors to model the effects of RS activity. Applying our approach on real 
data resulted in statistically significant improvement in task activation detection. In 
agreement with the seminal work by Fox et al. [3], our results indicate that RS activity 
also contributes to the noise seen in task fMRI data, in contrast to the traditional belief 
that only scanner artifacts, head motions, and physiological confounds contribute to 
fMRI noise. It is thus important to model RS activity in task fMRI studies.  
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