

Biomedical Signal and Image Computing Laboratory

BiSICL at a Glance

- The Biomedical Signal and Image Computing Lab (BiSICL) is a multidisciplinary research facility at UBC dedicated to computational research in biomedical imaging.
- We focus on close and direct collaboration with local and international clinicians and on-site presence spanning literally from the lab to the bedside.
- Mission: Create, develop, and translate innovative techniques for automated processing, analysis, understanding, and visualization of medical imaging.
- Research:
 - Robotic Assisted Minimally Invasive Surgery for abdominal cancer,
 - Interventional 3D ultrasound in orthopedic surgery,
 - Fused Functional and Structural Analysis for neuro-imaging, and
 - Simulation of patient specific data (swallowing)

Bone Localization in 3D Ultrasound: BiSICL graduate Dr. Hacihaliloglu scanning a patient in the OR prior to surgery for distal radius fracture reduction (left), Localization of the fracture using phase-symmetry (right) [MICCAI 2008]

Active learning for interactive image segmentation: BiSICL's TurtleSeg software being used to segment the CT image of the distal radius (left) and the wrist (right) [MICCAI 2011], available for download: http://www.turtleseg.org

Robotic Assisted Partial Nephrectomy

- A new project in collaboration with Qatar Robotic Surgery Center and Cleveland Clinic
- Ultimate goal is the seamless fusion and visualization of pre-operative and intra-operative imaging modalities in real-time
- First step is to reconstruct the imaged surgical scene topology captured by the binocular camera in 3D

Robust Dense Stereo-Vision Reconstruction

- We have proposed a simple yet powerful approach for dense matching [MICCAI's MVC 2012] between the two stereoscopic camera views and for reconstruction of the 3D scene.
- Our method adaptively and accurately finds the optimal correspondence between each pair of images according to three strict confidence criteria that efficiently discard the majority of outliers.

Stereo-Matching Woes: Example image depicting a scene captured during a partial nephrectomy procedure. Commonly encountered artifacts are highlighted in orange.

Challenges for Dense Reconstruction

- Current computer vision algorithms for 3D stereo reconstruction are mostly designed for static scenes reflecting simple geometries or shapes within environments where reflection and lighting is relatively ideal
- Conversely, in abdominal MIS, the environment is mostly composed of soft tissue and organs that significantly deform due to the surgeon's actions as well as breathing and cardiovascular activity
- Intra-abdominal also tissue presents complex reflections, due to the non-Lambertian nature of the surfaces, as well as irregular shapes, highly variable textures, and various distortions
- Further complications are caused by surgical instruments occluding a significant portion of the underlying tissue

Disparity $\delta > \delta_{max}$? Best NCC peak Reverse matching $\gamma_L > \gamma_{min}$? prior from Best peak => d_{R→L} $=> d_{L\rightarrow R}$ $\gamma_R > \gamma_{min}$? previous pair $w < w_{max}$? $|d_{L\rightarrow R} + d_{R\rightarrow L}| < \epsilon$? w=w+dw Discard Good matching point

Novel Robust Matching Method: Block diagram of our proposed dense matching method

Proposed Solution and Results

- Using a normalized cross correlation similarity metric between patches from the left and right images, we define three confidence criteria for outlier rejection.
- First, an effective gradient dispersion metric γ is used to estimate the strength of local spatial structure to address lack of discriminative features.
- Second, the quality of a matching is quantified by the difference of similarity score between the two highest peaks in the NCC profile. If this difference δ is too small, the match is deemed uncertain, and the patch size, w, is increased.
- Third, an inverse matching consistency is enforced by calculating disparities through right-to-left $(d_{R->L})$ and left-to-right $(d_{L->R})$ patch-matching. If the difference between the two disparity measurements is greater than the very small threshold ε , the window size is increased.

Robust Stereo-Matching Results: Comparison with state-of-the-art methods using clinical data from a DaVinci S surgical robot. (a) Original image, (b) Depth map from [Stoyanov 2010], (c) [Roehl 2012], and (d) our method. Our method successfully excludes outliers (highlighted in red).

References

- I. Hacihaliloglu, R. Abugharbieh, A. J. Hodgson, R. N. Rohling. "Bone Segmentation and Fracture Detection in Ultrasound Using 3D Local Phase Features". Medical Image Computing and Computer Assisted Intervention (MICCAI), NYC-USA, 2008, pp. 287–295
- A. Top, G Hamarneh, R. Abugharbieh, "Active Learning for Interactive 3D Image Segmentation". International Conference on Medical

Image Computing and Computer Assisted Intervention (MICCAI), Toronto-Canada, 2011, pp. 603-610

- S. Bernhardt, J. Abi-Nahid, R. Abugharbieh. "Robust Dense Endoscopic Stereo Reconstruction for Minimally Invasive Surgery". MICCAI workshop on Medical Computer Vision (MVC), Nice-France, Oct 2012
- S. Roehl et al., Dense GPU-enhanced surface reconstruction from stereo endoscopic images for intraoperative registration, The
- International Journal of Medical Physics Research and Practice, vol. 39, no. 3, pp. 1632-1645, Mar. 2012.

• D. Stoyanov, M. Visentini-Scarzanella, P. Pratt, and G.-Z. Yang, Real-time stereo reconstruction in robotically assisted minimally invasive

surgery, in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2010, vol. 13, no. Pt 1, pp.

Collaborators

275-282

